192 research outputs found

    Unaltered V̇O2 kinetics despite greater muscle oxygenation during heavy-intensity two-legged knee extension versus cycle exercise in humans

    Get PDF
    Relative perfusion of active muscles is greater during knee extension ergometry (KE) than cycle ergometry (CE). This provides the opportunity to investigate the effects of increased O₂ delivery (Q̇O₂) on deoxygenation heterogeneity among quadriceps muscles and pulmonary V̇O₂ kinetics. Using time-resolved near-infrared spectroscopy, we hypothesized that compared with CE the superficial vastus lateralis (VL), superficial rectus femoris and deep VL in KE would have 1) a smaller amplitude of the exercise-induced increase in deoxy[Hb+Mb] (related to the balance between V̇O₂ and Q̇O₂); 2) a greater amplitude of total[Hb+Mb] (related to the diffusive O₂ conductance); 3) a greater homogeneity of regional muscle deoxy[Hb+Mb]; and 4) no difference in pulmonary V̇O₂ kinetics. Eight participants performed square-wave KE and CE exercise from 20 W to heavy work rates. Deoxy[Hb+Mb] amplitude was less for all muscle regions in KE (P<0.05: superficial, KE 17-24 vs. CE 19-40; deep, KE 19 vs. CE 26 μM). Further, the amplitude of total[Hb+Mb] was greater for KE than CE at all muscle sites (P<0.05: superficial, KE 7-21 vs. CE 1-16; deep, KE 11 vs. CE -3 μM). Although the amplitude and heterogeneity of deoxy[Hb+Mb] was significantly lower in KE than CE during the first minute of exercise, the pulmonary V̇O₂ kinetics was not different for KE and CE. These data show that the microvascular Q̇O₂ to V̇O₂ ratio, and thus tissue oxygenation, was greater in KE than CE. This suggests that pulmonary and muscle V̇O₂ kinetics in young healthy humans are not limited by Q̇O₂ during heavy-intensity cycling

    Greater (V)over dotO(2peak) is correlated with greater skeletal muscle deoxygenation amplitude and hemoglobin concentration within individual muscles during ramp-incremental cycle exercise

    Get PDF
    Citation: Okushima, D., Poole, D. C., Barstow, T. J., Rossiter, H. B., Kondo, N., Bowen, T. S., . . . Koga, S. (2016). Greater (V)over dotO(2peak) is correlated with greater skeletal muscle deoxygenation amplitude and hemoglobin concentration within individual muscles during ramp-incremental cycle exercise. Physiological Reports, 4(23), 12. doi:10.14814/phy2.13065It is axiomatic that greater aerobic fitness ((V)over dotO(2peak)) derives from enhanced perfusive and diffusive O-2 conductances across active muscles. However, it remains unknown how these conductances might be reflected by regional differences in fractional O-2 extraction (i.e., deoxy [Hb+Mb] and tissue O-2 saturation [StO2]) and diffusive O-2 potential (i.e., total[Hb+Mb]) among muscles spatially heterogeneous in blood flow, fiber type, and recruitment (vastus lateralis, VL; rectus femoris, RF). Using quantitative time-resolved near-infrared spectroscopy during ramp cycling in 24 young participants ((V)over dotO(2peak) range: similar to 37.4-66.4 mL kg(-1) min(-1)), we tested the hypotheses that (1) deoxy [Hb+Mb] and total[Hb+Mb] at (V)over dotO(2peak) would be positively correlated with (V)over dotO(2peak) in both VL and RF muscles; (2) the pattern of deoxygenation (the deoxy[Hb+Mb] slopes) during submaximal exercise would not differ among subjects differing in (V)over dotO(2peak). Peak deoxy [Hb+Mb] and StO2 correlated with (V)over dotO(2peak) for both VL (r = 0.44 and -0.51) and RF (r = 0.49 and -0.49), whereas for total[Hb+Mb] this was true only for RF (r = 0.45). Baseline deoxy[Hb+Mb] and StO2 correlated with (V)over dotO(2peak) only for RF (r = -0.50 and 0.54). In addition, the deoxy[Hb+Mb] slopes were not affected by aerobic fitness. In conclusion, while the pattern of deoxygenation (the deoxy[Hb+Mb] slopes) did not differ between fitness groups the capacity to deoxygenate [Hb+Mb] (index of maximal fractional O-2 extraction) correlated significantly with (V)over dotO(2peak) in both RF and VL muscles. However, only in the RF did total [Hb+Mb] (index of diffusive O-2 potential) relate to fitness

    A combinatorial TIR1/AFB–Aux/IAA co-receptor system for differential sensing of auxin

    Get PDF
    The plant hormone auxin regulates virtually every aspect of plant growth and development. Auxin acts by binding the F-box protein transport inhibitor response 1 (TIR1) and promotes the degradation of the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) transcriptional repressors. Here we show that efficient auxin binding requires assembly of an auxin co-receptor complex consisting of TIR1 and an Aux/IAA protein. Heterologous experiments in yeast and quantitative IAA binding assays using purified proteins showed that different combinations of TIR1 and Aux/IAA proteins form co-receptor complexes with a wide range of auxin-binding affinities. Auxin affinity seems to be largely determined by the Aux/IAA. As there are 6 TIR1/AUXIN SIGNALING F-BOX proteins (AFBs) and 29 Aux/IAA proteins in Arabidopsis thaliana, combinatorial interactions may result in many co-receptors with distinct auxin-sensing properties. We also demonstrate that the AFB5–Aux/IAA co-receptor selectively binds the auxinic herbicide picloram. This co-receptor system broadens the effective concentration range of the hormone and may contribute to the complexity of auxin response

    Auxin Response Factor2 (ARF2) and Its Regulated Homeodomain Gene HB33 Mediate Abscisic Acid Response in Arabidopsis

    Get PDF
    The phytohormone abscisic acid (ABA) is an important regulator of plant development and response to environmental stresses. In this study, we identified two ABA overly sensitive mutant alleles in a gene encoding Auxin Response Factor2 (ARF2). The expression of ARF2 was induced by ABA treatment. The arf2 mutants showed enhanced ABA sensitivity in seed germination and primary root growth. In contrast, the primary root growth and seed germination of transgenic plants over-expressing ARF2 are less inhibited by ABA than that of the wild type. ARF2 negatively regulates the expression of a homeodomain gene HB33, the expression of which is reduced by ABA. Transgenic plants over-expressing HB33 are more sensitive, while transgenic plants reducing HB33 by RNAi are more resistant to ABA in the seed germination and primary root growth than the wild type. ABA treatment altered auxin distribution in the primary root tips and made the relative, but not absolute, auxin accumulation or auxin signal around quiescent centre cells and their surrounding columella stem cells to other cells stronger in arf2-101 than in the wild type. These results indicate that ARF2 and HB33 are novel regulators in the ABA signal pathway, which has crosstalk with auxin signal pathway in regulating plant growth

    De Novo Transcriptome Assembly and Comparative Analysis Elucidate Complicated Mechanism Regulating Astragalus chrysochlorus Response to Selenium Stimuli

    Get PDF
    Astragalus species are medicinal plants that are used in the world for years. Some Astragalus species are known for selenium accumulation and tolerance and one of them is Astragalus chrysochlorus, a secondary selenium accumulator. In this study, we employed Illumina deep sequencing technology for the first time to de novo assemble A. chrysochlorus transcriptome and identify the differentially expressed genes after selenate treatment. Totally, 59,656 unigenes were annotated with different databases and 53,960 unigenes were detected in NR database. Transcriptome in A. chrysochlorus is closer to Glycine max than other plant species with 43,1 percentage of similarity. Annotated unigenes were also used for gene ontology enrichment and pathway enrichment analysis. The most significant genes and pathways were ABC transporters, plant pathogen interaction, biosynthesis of secondary metabolites and carbohydrate metabolism. Our results will help to enlighten the selenium accumulation and tolerance mechanisms, respectively in plants

    Over-expression of the IGI1 leading to altered shoot-branching development related to MAX pathway in Arabidopsis

    Get PDF
    Shoot branching and growth are controlled by phytohormones such as auxin and other components in Arabidopsis. We identified a mutant (igi1) showing decreased height and bunchy branching patterns. The phenotypes reverted to the wild type in response to RNA interference with the IGI1 gene. Histochemical analysis by GUS assay revealed tissue-specific gene expression in the anther and showed that the expression levels of the IGI1 gene in apical parts, including flowers, were higher than in other parts of the plants. The auxin biosynthesis component gene, CYP79B2, was up-regulated in igi1 mutants and the IGI1 gene was down-regulated by IAA treatment. These results indicated that there is an interplay regulation between IGI1 and phytohormone auxin. Moreover, the expression of the auxin-related shoot branching regulation genes, MAX3 and MAX4, was down-regulated in igi1 mutants. Taken together, these results indicate that the overexpression of the IGI1 influenced MAX pathway in the shoot branching regulation

    A modular analysis of the Auxin signalling network

    Get PDF
    Auxin is essential for plant development from embryogenesis onwards. Auxin acts in large part through regulation of transcription. The proteins acting in the signalling pathway regulating transcription downstream of auxin have been identified as well as the interactions between these proteins, thus identifying the topology of this network implicating 54 Auxin Response Factor (ARF) and Aux/IAA (IAA) transcriptional regulators. Here, we study the auxin signalling pathway by means of mathematical modeling at the single cell level. We proceed analytically, by considering the role played by five functional modules into which the auxin pathway can be decomposed: the sequestration of ARF by IAA, the transcriptional repression by IAA, the dimer formation amongst ARFs and IAAs, the feedback loop on IAA and the auxin induced degradation of IAA proteins. Focusing on these modules allows assessing their function within the dynamics of auxin signalling. One key outcome of this analysis is that there are both specific and overlapping functions between all the major modules of the signaling pathway. This suggests a combinatorial function of the modules in optimizing the speed and amplitude of auxin-induced transcription. Our work allows identifying potential functions for homo- and hetero-dimerization of transcriptional regulators, with ARF:IAA, IAA:IAA and ARF:ARF dimerization respectively controlling the amplitude, speed and sensitivity of the response and a synergistic effect of the interaction of IAA with transcriptional repressors on these characteristics of the signaling pathway. Finally, we also suggest experiments which might allow disentangling the structure of the auxin signaling pathway and analysing further its function in plants

    Transcriptional Analysis Implicates Endoplasmic Reticulum Stress in Bovine Spongiform Encephalopathy

    Get PDF
    Bovine spongiform encephalopathy (BSE) is a fatal, transmissible, neurodegenerative disease of cattle. To date, the disease process is still poorly understood. In this study, brain tissue samples from animals naturally infected with BSE were analysed to identify differentially regulated genes using Affymetrix GeneChip Bovine Genome Arrays. A total of 230 genes were shown to be differentially regulated and many of these genes encode proteins involved in immune response, apoptosis, cell adhesion, stress response and transcription. Seventeen genes are associated with the endoplasmic reticulum (ER) and 10 of these 17 genes are involved in stress related responses including ER chaperones, Grp94 and Grp170. Western blotting analysis showed that another ER chaperone, Grp78, was up-regulated in BSE. Up-regulation of these three chaperones strongly suggests the presence of ER stress and the activation of the unfolded protein response (UPR) in BSE. The occurrence of ER stress was also supported by changes in gene expression for cytosolic proteins, such as the chaperone pair of Hsp70 and DnaJ. Many genes associated with the ubiquitin-proteasome pathway and the autophagy-lysosome system were differentially regulated, indicating that both pathways might be activated in response to ER stress. A model is presented to explain the mechanisms of prion neurotoxicity using these ER stress related responses. Clustering analysis showed that the differently regulated genes found from the naturally infected BSE cases could be used to predict the infectious status of the samples experimentally infected with BSE from the previous study and vice versa. Proof-of-principle gene expression biomarkers were found to represent BSE using 10 genes with 94% sensitivity and 87% specificity

    Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Auxin signaling is vital for plant growth and development, and plays important role in apical dominance, tropic response, lateral root formation, vascular differentiation, embryo patterning and shoot elongation. Auxin Response Factors (ARFs) are the transcription factors that regulate the expression of auxin responsive genes. The <it>ARF </it>genes are represented by a large multigene family in plants. The first draft of full maize genome assembly has recently been released, however, to our knowledge, the <it>ARF </it>gene family from maize (<it>ZmARF </it>genes) has not been characterized in detail.</p> <p>Results</p> <p>In this study, 31 maize (<it>Zea mays </it>L.) genes that encode ARF proteins were identified in maize genome. It was shown that maize <it>ARF </it>genes fall into related sister pairs and chromosomal mapping revealed that duplication of <it>ZmARFs </it>was associated with the chromosomal block duplications. As expected, duplication of some <it>ZmARFs </it>showed a conserved intron/exon structure, whereas some others were more divergent, suggesting the possibility of functional diversification for these genes. Out of these 31 <it>ZmARF </it>genes, 14 possess auxin-responsive element in their promoter region, among which 7 appear to show small or negligible response to exogenous auxin. The 18 <it>ZmARF </it>genes were predicted to be the potential targets of small RNAs. Transgenic analysis revealed that increased miR167 level could cause degradation of transcripts of six potential targets (<it>ZmARF3</it>, <it>9</it>, <it>16</it>, <it>18</it>, <it>22 </it>and <it>30</it>). The expressions of maize <it>ARF </it>genes are responsive to exogenous auxin treatment. Dynamic expression patterns of <it>ZmARF </it>genes were observed in different stages of embryo development.</p> <p>Conclusions</p> <p>Maize <it>ARF </it>gene family is expanded (31 genes) as compared to <it>Arabidopsis </it>(23 genes) and rice (25 genes). The expression of these genes in maize is regulated by auxin and small RNAs. Dynamic expression patterns of <it>ZmARF </it>genes in embryo at different stages were detected which suggest that maize <it>ARF </it>genes may be involved in seed development and germination.</p
    corecore