238 research outputs found

    A Geographical Location Model for Targeted Implementation of Lure-and-Kill Strategies Against Disease-Transmitting Mosquitoes in Rural Areas

    Get PDF
    Outdoor devices for luring and killing disease-transmitting mosquitoes have been proposed as potential com- plementary interventions alongside existing intra-domiciliary methods namely insecticide treated nets and house spraying with residual insecticides. To enhance effectiveness of such outdoor interventions, it is essential to optimally locate them in such a way that they target most of the outdoor mosquitoes. Using odour-baited lure and kill stations (OBS) as an example, we describe a map model derived from: 1) com-munity participatory mapping conducted to identify mosquito breeding habitats, 2) entomological field studies conducted to estimate outdoor mosquito densities and to determine safe distances of the OBS from human dwellings, and 3) field surveys conducted to map households, roads, outdoor human aggregations and landmarks. The resulting data were combined in a Ge- ographical Information Systems (GIS) environment and analysed to determine optimal locations for the OBS. Separately, a GIS-interpolated map produced by asking community members to rank different zones of the study area and show where they expected to find most mosquitoes, was visually compared to another map interpolated from the entomological survey of outdoor mosquito densities. An easy-to-interpret suitability map showing optimal sites for placing OBS was produced, which clearly depicted areas least suitable and areas most suitable for locating the devices. Comparative visual interpretation of maps derived from interpolating the community knowledge and entomological data revealed major similarities between the two maps. Using distribution patterns of human and mosquito populations as well as characteristics of candidate outdoor interventions, it is possible to readily determine suitable areas for targeted positioning of the interventions, thus improve effectiveness. This study also highlights possibilities of relying on community knowledge to approximate areas where mosquitoes are most abundant and where to locate outdoor complementary interventions such as odour-baited lure and kill stations for controlling disease-transmitting mosquitoes.\u

    Interventions that effectively target Anopheles funestus mosquitoes could significantly improve control of persistent malaria transmission in south–eastern Tanzania

    Get PDF
    Malaria is transmitted by many Anopheles species whose proportionate contributions vary across settings. We re-assessed the roles of Anopheles arabiensis and Anopheles funestus, and examined potential benefits of species-specific interventions in an area in south-eastern Tanzania, where malaria transmission persists, four years after mass distribution of long-lasting insecticide-treated nets (LLINs). Monthly mosquito sampling was done in randomly selected households in three villages using CDC light traps and back-pack aspirators, between January-2015 and January-2016, four years after the last mass distribution of LLINs in 2011. Multiplex polymerase chain reaction (PCR) was used to identify members of An. funestus and Anopheles gambiae complexes. Enzyme-linked immunosorbent assay (ELISA) was used to detect Plasmodium sporozoites in mosquito salivary glands, and to identify sources of mosquito blood meals. WHO susceptibility assays were done on wild caught female An. funestus s.l, and physiological ages approximated by examining mosquito ovaries for parity. A total of 20,135 An. arabiensis and 4,759 An. funestus were collected. The An. funestus group consisted of 76.6% An. funestus s.s, 2.9% An. rivulorum, 7.1% An. leesoni, and 13.4% unamplified samples. Of all mosquitoes positive for Plasmodium, 82.6% were An. funestus s.s, 14.0% were An. arabiensis and 3.4% were An. rivulorum. An. funestus and An. arabiensis contributed 86.21% and 13.79% respectively, of annual entomological inoculation rate (EIR). An. arabiensis fed on humans (73.4%), cattle (22.0%), dogs (3.1%) and chicken (1.5%), but An. funestus fed exclusively on humans. The An. funestus populations were 100% susceptible to organophosphates, pirimiphos methyl and malathion, but resistant to permethrin (10.5% mortality), deltamethrin (18.7%), lambda-cyhalothrin (18.7%) and DDT (26.2%), and had reduced susceptibility to bendiocarb (95%) and propoxur (90.1%). Parity rate was higher in An. funestus (65.8%) than An. arabiensis (44.1%). Though An. arabiensis is still the most abundant vector species here, the remaining malaria transmission is predominantly mediated by An. funestus, possibly due to high insecticide resistance and high survival probabilities. Interventions that effectively target An. funestus mosquitoes could therefore significantly improve control of persistent malaria transmission in south–eastern Tanzania

    Acute toxicity of the aqueous-methanolic Moringa oleifera (Lam) leaf extract on female Wistar albino rats

    Get PDF
    Background: Herbal preparations are widely assumed to be safe on oral administration and therefore the documentation of the toxic potential of some herbal concoctions used as medicine and nutrients is limited. Moringa oleifera (MO) is a plant that is gaining tremendous popularity in rural communities in Kenya as a means of offsetting nutritional and medicinal needs. However, very little is known about the safety of the plant on oral administration. Thus, the aim of the current study was to assess the biochemical and histological changes in the liver following the administration of an aqueous-methanolic (AQ-ME) MO leaf extract in female Wistar albino rats.Methods: Acute oral toxicity study on the AQ-ME MO leaf extract was conducted by the use of the limit test dose of the up and down procedure (OECD guideline number 425) with slight modifications. Briefly, ten (10) healthy, nulliparous, non-pregnant female Wistar strain albino rats aged               8-12 weeks and weighing 180±20 grams were used for the study. These animals were randomly selected into two groups; control and treatment group each having five (5) animals. They were then labelled to enable identification and control group animals were orally administered with physiological buffer saline once daily over a 48-hour period. The five (5) rats in the treatment group were dosed orally one at a time and once daily with a 2000 mg/kg dose of the AQ-ME MO leaf extract to determine the median lethal dose over a 48 hour period. Blood was then collected and used to prepare serum for biochemical analysis of aspartate amino transferase (AST), alanine amino transferase (ALT) and total bilirubin (TB) which are important biomarkers of liver dysfunction. Biochemical assays of these enzymes were performed using the method of the International Federation of Clinical Chemists (IFCC). Death was used as an endpoint, livers harvested and used to prepare transverse sections for histopathological examination. These sections were stained using the haematoxylin and eosin (H&E) method and observed for pathological changes using an optical microscope.Results: A 2000 mg/kg oral dose of AQ-ME MO leaf extract caused a significant (p0.05) increase in the mean levels of total bilirubin in the treatment group relative to the control group. On the other hand, the extract caused a non-significant (p>0.05) decrease in the mean levels of ALT in the treatment group relative to the control. The post mortem analysis of the hepatic index (liver to body weight ratio) revealed that there was a non-significant increase (p>0.05) in the hepatic index of the treatment group relative to the control. However, the transverse liver sections of treatment group animals showed mild distortions in the architecture of liver cells.Conclusions: Based on these results, the LD50 of the AQ-ME MO leaf extract was found to be >2000 mg/kg in female wistar albino rats

    INFLUENCE OF MATHEMATICS BRAILLE PROFICIENCY ON MATHEMATICS PERFORMANCE AMONG LEARNERS WITH VISUAL IMPAIRMENT IN SELECTED SPECIAL SECONDARY SCHOOLS IN KENYA

    Get PDF
    The purpose of this paper is to report some of the findings of a study which investigated the influence of mathematics Braille proficiency on mathematics performance among learners with visual impairment in selected special secondary schools in Kenya. In this study, descriptive design was used with a sample size of 55 respondents comprising of head teachers, mathematics teachers and learners with visual impairment in two special secondary schools. The study respondents were purposively sampled. Findings on the level of mathematics braille proficiency possessed by learners with visual impairment; and the relationship between mathematics Braille skills and mathematics performance are reported. These findings demonstrate a very low level of mathematics Braille skills; and there was a significant positive relationship between mathematics braille proficiency and mathematics performance, particularly among touch readers. These findings confirmed that lack of mathematics braille proficiency contributed to poor mathematics performance. On the basis of these findings, some recommendations are provided. Article visualizations

    Outdoor Mosquito Control Using Odour-Baited Devices: Development and Evaluation of a Potential New Strategy to Complement Indoor Malaria Prevention Methods

    Get PDF
    A considerable effort is currently underway to develop a malaria vaccine based on live Plasmodium falciparum sporozoites. The first requisite of a sporozoite vaccine is the guarantee of parasite arrest prior to the onset of the pathogenic blood stage. Immunisation with genetically attenuated parasites (GAP) that arrest in the liver forms a promising approach. Work in this thesis describes the development and characterisation of a P. berghei Δb9Δslarp GAP that fully arrests in the liver. Immunisation of multiple mouse strains with low numbers of Δb9Δslarp GAP resulted in sterile protection. The Δb9Δslarp GAP is there- fore the leading GAP vaccine candidate. Work in this the- sis further describes the effect of varying the parameters of sporozoite inoculation on parasite liver load. These findings provide a rationale for the design of clinical trials aimed at the administration of live attenuated P. falciparum sporozoites

    Most outdoor malaria transmission by behaviourally-resistant Anopheles arabiensis is mediated by mosquitoes that have previously been inside houses

    Get PDF
    Background Anopheles arabiensis is stereotypical of diverse vectors that mediate residual malaria transmission globally, because it can feed outdoors upon humans or cattle, or enter but then rapidly exit houses without fatal exposure to insecticidal nets or sprays. Methods Life histories of a well-characterized An. arabiensis population were simulated with a simple but process-explicit deterministic model and relevance to other vectors examined through sensitivity analysis. Results Where most humans use bed nets, two thirds of An. arabiensis blood feeds and half of malaria transmission events were estimated to occur outdoors. However, it was also estimated that most successful feeds and almost all (>98 %) transmission events are preceded by unsuccessful attempts to attack humans indoors. The estimated proportion of vector blood meals ultimately obtained from humans indoors is dramatically attenuated by availability of alternative hosts, or partial ability to attack humans outdoors. However, the estimated proportion of mosquitoes old enough to transmit malaria, and which have previously entered a house at least once, is far less sensitive to both variables. For vectors with similarly modest preference for cattle over humans and similar ability to evade fatal indoor insecticide exposure once indoors, >80 % of predicted feeding events by mosquitoes old enough to transmit malaria are preceded by at least one house entry event, so long as ≥40 % of attempts to attack humans occur indoors and humans outnumber cattle ≥4-fold. Conclusions While the exact numerical results predicted by such a simple deterministic model should be considered only approximate and illustrative, the derived conclusions are remarkably insensitive to substantive deviations from the input parameter values measured for this particular An. arabiensis population. This life-history analysis, therefore, identifies a clear, broadly-important opportunity for more effective suppression of residual malaria transmission by An. arabiensis in Africa and other important vectors of residual transmission across the tropics. Improved control of predominantly outdoor residual transmission by An. arabiensis, and other modestly zoophagic vectors like Anopheles darlingi, which frequently enter but then rapidly exit from houses, may be readily achieved by improving existing technology for killing mosquitoes indoors

    Comparative Field Evaluation of Combinations of Long-Lasting Insecticide Treated Nets and Indoor Residual Spraying, Relative to Either Method Alone, for Malaria Prevention in an Area where the main Vector is Anopheles Arabiensis.

    Get PDF
    Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are commonly used together in the same households to improve malaria control despite inconsistent evidence on whether such combinations actually offer better protection than nets alone or IRS alone. Comparative tests were conducted using experimental huts fitted with LLINs, untreated nets, IRS plus untreated nets, or combinations of LLINs and IRS, in an area where Anopheles arabiensis is the predominant malaria vector species. Three LLIN types, Olyset®, PermaNet 2.0® and Icon Life® nets and three IRS treatments, pirimiphos-methyl, DDT, and lambda cyhalothrin, were used singly or in combinations. We compared, number of mosquitoes entering huts, proportion and number killed, proportions prevented from blood-feeding, time when mosquitoes exited the huts, and proportions caught exiting. The tests were done for four months in dry season and another six months in wet season, each time using new intact nets. All the net types, used with or without IRS, prevented >99% of indoor mosquito bites. Adding PermaNet 2.0® and Icon Life®, but not Olyset® nets into huts with any IRS increased mortality of malaria vectors relative to IRS alone. However, of all IRS treatments, only pirimiphos-methyl significantly increased vector mortality relative to LLINs alone, though this increase was modest. Overall, median mortality of An. arabiensis caught in huts with any of the treatments did not exceed 29%. No treatment reduced entry of the vectors into huts, except for marginal reductions due to PermaNet 2.0® nets and DDT. More than 95% of all mosquitoes were caught in exit traps rather than inside huts. Where the main malaria vector is An. arabiensis, adding IRS into houses with intact pyrethroid LLINs does not enhance house-hold level protection except where the IRS employs non-pyrethroid insecticides such as pirimiphos-methyl, which can confer modest enhancements. In contrast, adding intact bednets onto IRS enhances protection by preventing mosquito blood-feeding (even if the nets are non-insecticidal) and by slightly increasing mosquito mortality (in case of LLINs). The primary mode of action of intact LLINs against An. arabiensis is clearly bite prevention rather than insecticidal activity. Therefore, where resources are limited, priority should be to ensure that everyone at risk consistently uses LLINs and that the nets are regularly replaced before being excessively torn. Measures that maximize bite prevention (e.g. proper net sizes to effectively cover sleeping spaces, stronger net fibres that resist tears and burns and net use practices that preserve net longevity), should be emphasized

    Using a New Odour-Baited Device to Explore Options for Luring and Killing Outdoor-Biting Malaria Vectors: A Report on Design and Field Evaluation of the Mosquito Landing Box.

    Get PDF
    Mosquitoes that bite people outdoors can sustain malaria transmission even where effective indoor interventions such as bednets or indoor residual spraying are already widely used. Outdoor tools may therefore complement current indoor measures and improve control. We developed and evaluated a prototype mosquito control device, the 'Mosquito Landing Box' (MLB), which is baited with human odours and treated with mosquitocidal agents. The findings are used to explore technical options and challenges relevant to luring and killing outdoor-biting malaria vectors in endemic settings. Field experiments were conducted in Tanzania to assess if wild host-seeking mosquitoes 1) visited the MLBs, 2) stayed long or left shortly after arrival at the device, 3) visited the devices at times when humans were also outdoors, and 4) could be killed by contaminants applied on the devices. Odours suctioned from volunteer-occupied tents were also evaluated as a potential low-cost bait, by comparing baited and unbaited MLBs. There were significantly more Anopheles arabiensis, An. funestus, Culex and Mansonia mosquitoes visiting baited MLB than unbaited controls (P<=0.028). Increasing sampling frequency from every 120 min to 60 and 30 min led to an increase in vector catches of up to 3.6 fold (P<=0.002), indicating that many mosquitoes visited the device but left shortly afterwards. Outdoor host-seeking activity of malaria vectors peaked between 7:30 and 10:30pm, and between 4:30 and 6:00am, matching durations when locals were also outdoors. Maximum mortality of mosquitoes visiting MLBs sprayed or painted with formulations of candidate mosquitocidal agent (pirimiphos-methyl) was 51%. Odours from volunteer occupied tents attracted significantly more mosquitoes to MLBs than controls (P<0.001). While odour-baited devices such as the MLBs clearly have potential against outdoor-biting mosquitoes in communities where LLINs are used, candidate contaminants must be those that are effective at ultra-low doses even after short contact periods, since important vector species such as An. arabiensis make only brief visits to such devices. Natural human odours suctioned from occupied dwellings could constitute affordable sources of attractants to supplement odour baits for the devices. The killing agents used should be environmentally safe, long lasting, and have different modes of action (other than pyrethroids as used on LLINs), to curb the risk of physiological insecticide resistance

    Correlations Between Household Occupancy and Malaria Vector Biting Risk in Rural Tanzanian Villages: Implications for High-resolution Spatial Targeting of Control Interventions.

    Get PDF
    Fine-scale targeting of interventions is increasingly important where epidemiological disease profiles depict high geographical stratifications. This study verified correlations between household biomass and mosquito house-entry using experimental hut studies, and then demonstrated how geographical foci of mosquito biting risk can be readily identified based on spatial distributions of household occupancies in villages. A controlled 4 × 4 Latin square experiment was conducted in rural Tanzania, in which no, one, three or six adult male volunteers slept under intact bed nets, in experimental huts. Mosquitoes entering the huts were caught using exit interception traps on eaves and windows. Separately, monthly mosquito collections were conducted in 96 randomly selected households in three villages using CDC light traps between March-2012 and November-2013. The number of people sleeping in the houses and other household and environmental characteristics were recorded. ArcGIS 10 (ESRI-USA) spatial analyst tool, Gi* Ord Statistic was used to analyse clustering of vector densities and household occupancy. The densities of all mosquito genera increased in huts with one, three or six volunteers, relative to huts with no volunteers, and direct linear correlations within tested ranges (P < 0.001). Significant geographical clustering of indoor densities of malaria vectors, Anopheles arabiensis and Anopheles funestus, but not Culex or Mansonia species occurred in locations where households with highest occupancy were also most clustered (Gi* P ≤ 0.05, and Gi* Z-score ≥1.96). This study demonstrates strong correlations between household occupancy and malaria vector densities in households, but also spatial correlations of these variables within and between villages in rural southeastern Tanzania. Fine-scale clustering of indoor densities of vectors within and between villages occurs in locations where houses with highest occupancy are also clustered. The study indicates potential for using household census data to preliminarily identify households with greatest Anopheles mosquito biting risk

    Attracting, trapping and killing disease-transmitting mosquitoes using odor-baited stations - The Ifakara Odor-Baited Stations

    Get PDF
    BACKGROUND: To accelerate efforts towards control and possibly elimination of mosquito-borne diseases such as malaria and lymphatic filariasis, optimally located outdoor interventions could be used to complement existing intradomicilliary vector control methods such as house spraying with insecticides and insecticidal bednets. METHODS: We describe a new odor-baited station for trapping, contaminating and killing disease-transmitting mosquitoes. This device, named the 'Ifakara Odor-baited Station' (Ifakara OBS), is a 4 m3 hut-shaped canvas box with seven openings, two of which may be fitted with interception traps to catch exiting mosquitoes. It is baited with synthetic human odors and may be augmented with contaminants including toxic insecticides or biological agents. RESULTS: In field trials where panels of fabric were soaked in 1% pirimiphos-methyl solution and suspended inside the Ifakara OBS, at least 73.6% of Anopheles arabiensis, 78.7% of Culex and 60% of Mansonia mosquitoes sampled while exiting the OBS, died within 24 hours. When used simply as a trap and evaluated against two existing outdoor traps, Ifakara Tent trap and Mosquito Magnet-X(R), the OBS proved more efficacious than the Ifakara Tent trap in catching all mosquito species found (P < 0.001). Compared to the Mosquito Magnet-X(R), it was equally efficacious in catching An. arabiensis (P = 0.969), but was less efficacious against Culex (P < 0.001) or Mansonia species (P < 0.001). CONCLUSION: The Ifakara OBS is efficacious against disease-carrying mosquitoes including the malaria vector, An. arabiensis and Culicine vectors of filarial worms and arboviruses. It can be used simultaneously as a trap and as a contamination or killing station, meaning most mosquitoes which escape trapping would leave when already contaminated and die shortly afterwards. This technique has potential to complement current vector control methods, by targeting mosquitoes in places other than human dwellings, but its effectiveness in the field will require cheap, long-lasting and easy-to-use mosquito lures
    corecore