17 research outputs found

    Bidirectional regulation of thermotaxis by glutamate transmissions in Caenorhabditis elegans

    Get PDF
    This paper provides a molecular and genetic analysis of the neural circuitry that regulates the migration of Caenorhabditis elegans towards either warmer or colder temperature and reveals an important role of glutamate signalling in this process

    VSOP/Hv1 proton channels sustain calcium entry, neutrophil migration, and superoxide production by limiting cell depolarization and acidification

    Get PDF
    Neutrophils kill microbes with reactive oxygen species generated by the NADPH oxidase, an enzyme which moves electrons across membranes. Voltage-gated proton channels (voltage-sensing domain only protein [VSOP]/Hv1) are required for high-level superoxide production by phagocytes, but the mechanism of this effect is not established. We show that neutrophils from VSOP/Hv1−/− mice lack proton currents but have normal electron currents, indicating that these cells have a fully functional oxidase that cannot conduct protons. VSOP/Hv1−/− neutrophils had a more acidic cytosol, were more depolarized, and produced less superoxide and hydrogen peroxide than neutrophils from wild-type mice. Hydrogen peroxide production was rescued by providing an artificial conductance with gramicidin. Loss of VSOP/Hv1 also aborted calcium responses to chemoattractants, increased neutrophil spreading, and decreased neutrophil migration. The migration defect was restored by the addition of a calcium ionophore. Our findings indicate that proton channels extrude the acid and compensate the charge generated by the oxidase, thereby sustaining calcium entry signals that control the adhesion and motility of neutrophils. Loss of proton channels thus aborts superoxide production and causes a severe signaling defect in neutrophils

    Novel and Conserved Protein Macoilin Is Required for Diverse Neuronal Functions in Caenorhabditis elegans

    Get PDF
    Neural signals are processed in nervous systems of animals responding to variable environmental stimuli. This study shows that a novel and highly conserved protein, macoilin (MACO-1), plays an essential role in diverse neural functions in Caenorhabditis elegans. maco-1 mutants showed abnormal behaviors, including defective locomotion, thermotaxis, and chemotaxis. Expression of human macoilin in the C. elegans nervous system weakly rescued the abnormal thermotactic phenotype of the maco-1 mutants, suggesting that macoilin is functionally conserved across species. Abnormal thermotaxis may have been caused by impaired locomotion of maco-1 mutants. However, calcium imaging of AFD thermosensory neurons and AIY postsynaptic interneurons of maco-1 mutants suggest that macoilin is required for appropriate responses of AFD and AIY neurons to thermal stimuli. Studies on localization of MACO-1 showed that C. elegans and human macoilins are localized mainly to the rough endoplasmic reticulum. Our results suggest that macoilin is required for various neural events, such as the regulation of neuronal activity

    Regulation of Neutrophil Functions by Hv1/VSOP Voltage-Gated Proton Channels

    No full text
    The voltage-gated proton channel, Hv1, also termed VSOP, was discovered in 2006. It has long been suggested that proton transport through voltage-gated proton channels regulate reactive oxygen species (ROS) production in phagocytes by counteracting the charge imbalance caused by the activation of NADPH oxidase. Discovery of Hv1/VSOP not only confirmed this process in phagocytes, but also led to the elucidation of novel functions in phagocytes. The compensation of charge by Hv1/VSOP sustains ROS production and is also crucial for promoting Ca2+ influx at the plasma membrane. In addition, proton extrusion into neutrophil phagosomes by Hv1/VSOP is necessary to maintain neutral phagosomal pH for the effective killing of bacteria. Contrary to the function of Hv1/VSOP as a positive regulator for ROS generation, it has been revealed that Hv1/VSOP also acts to inhibit ROS production in neutrophils. Hv1/VSOP inhibits hypochlorous acid production by regulating degranulation, leading to reduced inflammation upon fungal infection, and suppresses the activation of extracellular signal-regulated kinase (ERK) signaling by inhibiting ROS production. Thus, Hv1/VSOP is a two-way player regulating ROS production. Here, we review the functions of Hv1/VSOP in neutrophils and discuss future perspectives

    Bidirectional regulation of thermotaxis by glutamate transmissions in Caenorhabditis elegans

    No full text
    In complex neural circuits of the brain, massive information is processed with neuronal communication through synaptic transmissions. It is thus fundamental to delineate information flows encoded by various kinds of transmissions. Here, we show that glutamate signals from two distinct sensory neurons bidirectionally affect the same postsynaptic interneuron, thereby producing the opposite behaviours. EAT-4/VGLUT (vesicular glutamate transporter)-dependent glutamate signals from AFD thermosensory neurons inhibit the postsynaptic AIY interneurons through activation of GLC-3/GluCl inhibitory glutamate receptor and behaviourally drive migration towards colder temperature. By contrast, EAT-4-dependent glutamate signals from AWC thermosensory neurons stimulate the AIY neurons to induce migration towards warmer temperature. Alteration of the strength of AFD and AWC signals led to significant changes of AIY activity, resulting in drastic modulation of behaviour. We thus provide an important insight on information processing, in which two glutamate transmissions encoding opposite information flows regulate neural activities to produce a large spectrum of behavioural outputs

    Multimeric nature of voltage-gated proton channels

    No full text
    Voltage-gated potassium channels are comprised of four subunits, and each subunit has a pore domain and a voltage-sensing domain (VSD). The four pore domains assemble to form one single central pore, and the four individual VSDs control the gate of the pore. Recently, a family of voltage-gated proton channels, such as HV or voltage sensor only protein (VSOP), was discovered that contain a single VSD but no pore domain. It has been assumed that VSOP channels are monomeric and contain a single VSD that functions as both the VSD and the pore domain. It remains unclear, however, how a protein that contains only a VSD and no pore domain can conduct ions. Using fluorescence measurements and immunoprecipitation techniques, we show here that VSOP channels are expressed as multimeric channels. Further, FRET experiments on constructs with covalently linked subunits show that VSOP channels are dimers. Truncation of the cytoplasmic regions of VSOP reduced the dimerization, suggesting that the dimerization is caused mainly by cytoplasmic protein–protein interactions. However, these N terminus- and C terminus-deleted channels displayed large proton currents. Therefore, we conclude that even though VSOP channels are expressed mainly as dimers in the cell membrane, single VSOP subunits could function independently as proton channels

    Reversal of Salt Preference Is Directed by the Insulin/PI3K and Gq/PKC Signaling in Caenorhabditis elegans

    No full text
    Animals search for foods and decide their behaviors according to previous experience. Caenorhabditis elegans detects chemicals with a limited number of sensory neurons, allowing us to dissect roles of each neuron for innate and learned behaviors. C. elegans is attracted to salt after exposure to the salt (NaCl) with food. In contrast, it learns to avoid the salt after exposure to the salt without food. In salt-attraction behavior, it is known that the ASE taste sensory neurons (ASEL and ASER) play a major role. However, little is known about mechanisms for learned salt avoidance. Here, through dissecting contributions of ASE neurons for salt chemotaxis, we show that both ASEL and ASER generate salt chemotaxis plasticity. In ASER, we have previously shown that the insulin/PI 3-kinase signaling acts for starvation-induced salt chemotaxis plasticity. This study shows that the PI 3-kinase signaling promotes aversive drive of ASER but not of ASEL. Furthermore, the Gq signaling pathway composed of Gqα EGL-30, diacylglycerol, and nPKC (novel protein kinase C) TTX-4 promotes attractive drive of ASER but not of ASEL. A putative salt receptor GCY-22 guanylyl cyclase is required in ASER for both salt attraction and avoidance. Our results suggest that ASEL and ASER use distinct molecular mechanisms to regulate salt chemotaxis plasticity
    corecore