3,267 research outputs found
Star formation activity in the southern Galactic HII region G351.63-1.25
The southern Galactic high mass star-forming region, G351.6-1.3, is a HII
region-molecular cloud complex with a luminosity of 2.0 x 10^5 L_sun, located
at a distance of 2.4 kpc. In this paper, we focus on the investigation of the
associated HII region, embedded cluster and the interstellar medium in the
vicinity of G351.6-1.3. We address the identification of exciting source(s) as
well as the census of stellar populations. The ionised gas distribution has
been mapped using the Giant Metrewave Radio Telescope (GMRT), India at three
continuum frequencies: 1280, 610 and 325 MHz. The HII region shows an elongated
morphology and the 1280 MHz map comprises six resolved high density regions
encompassed by diffuse emission spanning 1.4 pc x 1.0 pc. The zero age
main-sequence (ZAMS) spectral type of the brightest radio core is O7.5. We have
carried out near-infrared observations in the JHKs bands using the SIRIUS
instrument on the 1.4 m Infrared Survey Facility (IRSF) telescope. The
near-infrared images reveal the presence of a cluster embedded in nebulous
fan-shaped emission. The log-normal slope of the K-band luminosity function of
the embedded cluster is found to be 0.27 +- 0.03 and the fraction of the
near-infrared excess stars is estimated to be 43%. These indicate that the age
of the cluster is consistent with 1 Myr. The champagne flow model from a flat,
thin molecular cloud is used to explain the morphology of radio emission with
respect to the millimetre cloud and infrared brightness.Comment: 18 pages, 8 figures, To be published in MNRA
Star Formation Activity in the Galactic HII Complex S255-S257
We present results on the star-formation activity of an optically obscured
region containing an embedded cluster (S255-IR) and molecular gas between two
evolved HII regions S255 and S257. We have studied the complex using optical,
near-infrared (NIR) imaging, optical spectroscopy and radio continnum mapping
at 15 GHz, along with Spitzer-IRAC results. It is found that the main exciting
sources of the evolved HII regions S255 and S257 and the compact HII regions
associated with S255-IR are of O9.5 - B3 V nature, consistent with previous
observations. Our NIR observations reveal 109 likely young stellar object (YSO)
candidates in an area of ~ 4'.9 x 4'.9 centered on S255-IR, which include 69
new YSO candidates. Our observations increased the number of previously
identified YSOs in this region by 32%. To see the global star formation, we
constructed the V-I/V diagram for 51 optically identified IRAC YSOs in an area
of ~ 13' x 13' centered on S255-IR. We suggest that these YSOs have an
approximate age between 0.1 - 4 Myr, indicating a non-coeval star formation.
Using spectral energy distribution models, we constrained physical properties
and evolutionary status of 31 and 16 YSO candidates outside and inside the gas
ridge, respectively. The models suggest that the sources associated within the
gas ridge are of younger population (mean age ~ 1.2 Myr) than the sources
outside the gas ridge (mean age ~ 2.5 Myr). The positions of the young sources
inside the gas ridge at the interface of the HII regions S255 and S257, favor a
site of induced star formation.Comment: 46 pages, 14 figures, 5 tables. Accepted for publication in The
Astrophysical Journa
Global alliance on vaccines and immunizations. Save the Children UK had concerns about alliance that went further than report did.
The ionizing sources of luminous compact HII regions in the RCW106 and RCW122 clouds
Given the rarity of young O star candidates, compact HII regions embedded in
dense molecular cores continue to serve as potential sites to peer into the
details of high-mass star formation. To uncover the ionizing sources of the
most luminous and compact HII regions embedded in the RCW106 and RCW122 giant
molecular clouds, known to be relatively nearby (2-4 kpc) and isolated, thus
providing an opportunity to examine spatial scales of a few hundred to a
thousand AU in size. High spatial resolution (0.3"), mid-infrared spectra
(R=350), including the fine structure lines [ArIII] and [NeII], were obtained
for four luminous compact HII regions, embedded inside the dense cores within
the RCW106 and RCW122 molecular cloud complexes. At this resolution, these
targets reveal point-like sources surrounded by nebulosity of different
morphologies, uncovering details at spatial dimensions of <1000AU. The
point-like sources display [ArIII] and [NeII] lines - the ratios of which are
used to estimate the temperature of the embedded sources. The derived
temperatures are indicative of mid-late O type objects for all the sources with
[ArIII] emission. Previously known characteristics of these targets from the
literature, including evidence of disk or accretion suggest that the identified
sources may grow more to become early-type O stars by the end of the star
formation process
Test of isospin symmetry via low energy H(,) charge exchange
We report measurements of the differential cross
sections at six momenta (104-143 MeV/c) and four angles (0-40 deg) by detection
of -ray pairs from decays using the TRIUMF
RMC spectrometer. This region exhibits a vanishing zero-degree cross section
from destructive interference between s-- and p--waves, thus yielding special
sensitivity to pion-nucleon dynamics and isospin symmetry breaking. Our data
and previous data do not agree, with important implications for earlier claims
of large isospin violating effects in low energy pion-nucleon interactions.Comment: 5 pages, 3 figures, submitted to Physical Review Letter
- …
