41 research outputs found

    The hnRNP C tetramer binds to CBC on mRNA and impedes PHAX recruitment for the classification of RNA polymerase II transcripts

    Get PDF
    In eukaryotic cells, various classes of RNAs are exported to the cytoplasm by class-specific factors. Accumulating evidence has shown that export factors affect the fate of RNA, demonstrating the importance of proper RNA classification upon export. We previously reported that RNA polymerase II transcripts were classified after synthesis depending on their length, and identified heterogeneous nuclear ribonucleoprotein (hnRNP) C as the key classification factor. HnRNP C inhibits the recruitment of PHAX, an adapter protein for spliceosomal U snRNA export, to long transcripts, navigating these RNAs to the mRNA export pathway. However, the mechanisms by which hnRNP C inhibits PHAX recruitment to mRNA remain unknown. We showed that the cap-binding complex, a bridging factor between m7G-capped RNA and PHAX, directly interacted with hnRNP C on mRNA. Additionally, we revealed that the tetramer-forming activity of hnRNP C and its strong RNA-binding activity were crucial for the inhibition of PHAX binding to longer RNAs. These results suggest that mRNA is wrapped around the hnRNP C tetramer without a gap from the cap, thereby impeding the recruitment of PHAX. The results obtained on the mode of length-specific RNA classification by the hnRNP C tetramer will provide mechanistic insights into hnRNP C-mediated RNA biogenesis

    hDbr1 is a nucleocytoplasmic shuttling protein with a protein phosphatase-like motif essential for debranching activity.

    Get PDF
    In higher eukaryotes most genes contain multiple introns. Introns are excised from pre-mRNAs by splicing and eventually degraded in the nucleus. It is likely that rapid intron turnover in the nucleus is important in higher eukaryotes, but this pathway is poorly understood. In order to gain insights into this pathway, we analyzed the human lariat RNA debranching enzyme1 (hDbr1) protein that catalyzes debranching of lariat-intron RNAs. Transfection experiments demonstrate that hDbr1 is localized in a nucleoplasm of HeLa cells through a bipartite type nuclear localization signal near carboxyl-terminus. The conserved GNHE motif, originally identified in protein phosphatase protein family, is critical for hDbr1 to dissolve lariat structure in vitro. Furthermore, heterokaryon experiments show that hDbr1 is a nucleocytoplasmic shuttling protein, suggesting novel role(s) of hDbr1 in the cytoplasm

    Nucleocytoplasmic Transport: The Last 200 Nanometers

    Get PDF

    Role of poly (A) tail as an identity element for mRNA nuclear export

    Get PDF
    Different RNA species are rigorously discriminated and exported by distinct export factors, but this discrimination mechanism remains largely unknown. We previously showed, by RNA microinjection experiments, that intronless mRNAs are discriminated from U snRNAs based on their difference in RNA length. However, it was unclear how they are discriminated in the natural situation in which their nascent transcripts emerge progressively during transcription. We hypothesized that transcription from the corresponding promoters is important for this discrimination. Here we show that contrary to our hypothesis, the discrimination process was not significantly influenced by whether transcription occurred from an mRNA- versus a U snRNA-type promoter. Rather, the features of transcribed RNAs determined the RNA identity, consistent with our previous results of RNA microinjection. Moreover, we found that the poly (A) tail can function as an identity element for mRNA export. The presence of a poly (A) tail of an appropriate length committed otherwise short Pol II transcripts to the mRNA export pathway in a dominant manner, indicating that the poly (A) tail either contributes to increasing the RNA length or functions as a platform to recruit mRNA export factors. Our results reveal a novel function of the poly (A) tail in mRNA export

    Isolation and characterization of post-splicing lariat–intron complexes

    Get PDF
    Pre-mRNA splicing occurs in a large complex spliceosome. The steps of both spliceosome assembly and splicing reaction have been extensively analyzed, and many of the factors involved have been identified. However, the post-splicing intron turnover process, especially in vertebrates, remains to be examined. In this paper, we developed a two-tag affinity purification method for purifying lariat intron RNA–protein complexes obtained from an in vitro splicing reaction. Glycerol gradient sedimentation analyses revealed that there are at least two forms of post-splicing intron complexes, which we named the ‘Intron Large (IL)’ and the ‘Intron Small (IS)’ complexes. The IL complex contains U2, U5 and U6 snRNAs and other protein splicing factors, whereas the IS complex contains no such U snRNAs or proteins. We also showed that TFIP11, a human homolog of yeast Ntr1, is present in the IL complex and the TFIP11 mutant protein, which lacks the interaction domain with hPrp43 protein, caused accumulation of the IL complex and reduction of IS complex formation in vitro. Taken together, our results strongly suggest that TFIP11 in cooperation with hPrp43 mediates the transition from the IL complex to the IS complex, leading to efficient debranching and turnover of excised introns

    HIV-1 Rev protein specifies the viral RNA export pathway by suppressing TAP/NXF1 recruitment.

    Get PDF
    Nuclear RNA export pathways in eukaryotes are often linked to the fate of a given RNA. Therefore, the choice of export pathway should be well-controlled to avoid an unfavorable effect on gene expression. Although some RNAs could be exported by more than one pathway, little is known about how the choice is regulated. This issue is highlighted when the human immunodeficiency virus type 1 (HIV-1) Rev protein induces the export of singly spliced and unspliced HIV-1 transcripts. How these RNAs are exported is not well understood because such transcripts should have the possibility of utilizing CRM1-dependent export via Rev or cellular TAP/NXF1-dependent export via the transcription/export (TREX) complex, or both. Here we found that Rev suppressed TAP/NXF1-dependent export of model RNA substrates that recapitulated viral transcripts. In this effect, Rev interacted with the cap-binding complex and inhibited the recruitment of the TREX complex. Thus, Rev controls the identity of the factor occupying the cap-proximal region that determines the RNA export pathway. This ribonucleoprotein remodeling activity of Rev may favor viral gene expression

    40S subunit dissociation and proteasome-dependent RNA degradation in nonfunctional 25S rRNA decay.

    Get PDF
    Eukaryotic cells have quality control systems that eliminate nonfunctional rRNAs with deleterious mutations (nonfunctional rRNA decay, NRD). We have previously reported that 25S NRD requires an E3 ubiquitin ligase complex, which is involved in ribosomal ubiquitination. However, the degradation process of nonfunctional ribosomes has remained unknown. Here, using genetic screening, we identified two ubiquitin-binding complexes, the Cdc48-Npl4-Ufd1 complex (Cdc48 complex) and the proteasome, as the factors involved in 25S NRD. We show that the nonfunctional 60S subunit is dissociated from the 40S subunit in a Cdc48 complex-dependent manner, before it is attacked by the proteasome. When we examined the nonfunctional 60S subunits that accumulated under proteasome-depleted conditions, the majority of mutant 25S rRNAs retained their full length at a single-nucleotide resolution. This indicates that the proteasome is an essential factor triggering rRNA degradation. We further showed that ribosomal ubiquitination can be stimulated solely by the suppression of the proteasome, suggesting that ubiquitin-proteasome-dependent RNA degradation occurs in broader situations, including in general rRNA turnover
    corecore