64 research outputs found
Trait-based approaches to zooplankton communities
Zooplankton are major primary consumers and predators in most aquatic ecosystems. They exhibit tremendous diversity of traits, ecological strategies and, consequently, impacts on other trophic levels and the cycling of materials and energy. An adequate representation of this diversity in community and ecosystem models is necessary to generate realistic predictions on the functioning of aquatic ecosystems but remains extremely challenging. We propose that the use of trait-based approaches is a promising way to reduce complexity while retaining realism in developing novel descriptions of zooplankton in ecosystem models. Characterizing zooplankton traits and trade-offs will also be helpful in understanding the selection pressures and diversity patterns that emerge in different ecosystems along major environmental gradients. Zooplankton traits can be characterized according to their function and type. Some traits, such as body size and motility, transcend several functions and are major determinants of zooplankton ecological strategies. Future developments of trait-based approaches to zooplankton should assemble a comprehensive matrix of key traits for diverse groups and explore it for general patterns; develop novel predictive models that explicitly incorporate traits and associated trade-offs; and utilize these traits to explain and predict zooplankton community structure and dynamics under different environmental conditions, including global change scenarios. © 2013 The Author
Individual Assessment of Arteriosclerosis by Empiric Clinical Profiling
BACKGROUND: Arteriosclerosis is a common cause of chronic morbidity and mortality. Myocardial infarction, stroke or other cardiovascular events identify vulnerable patients who suffer from symptomatic arteriosclerosis. Biomarkers to identify vulnerable patients before cardiovascular events occur are warranted to improve care for affected individuals. We tested how accurately basic clinical data can describe and assess the activity of arteriosclerosis in the individual patient. METHODOLOGY/PRINCIPAL FINDINGS: 269 in-patients who were treated for various conditions at the department of general medicine of an academic tertiary care center were included in a cross-sectional study. Personal history and clinical examination were obtained. When paraclinical tests were performed, the results were added to the dataset. The numerical variables in the clinical examination were statistically compared between patients with proven symptomatic arteriosclerosis (n = 100) and patients who had never experienced cardiovascular events in the past (n = 110). 25 variables were different between these two patient groups and contributed to the disease activity score. The percentile distribution of these variables defined the empiric clinical profile. Anthropometric data, signs of arterial, cardiac and renal disease, systemic inflammation and health economics formed the major categories of the empiric clinical profile that described an individual patient's disease activity. The area under the curve of the receiver operating curve for symptomatic arteriosclerosis was 0.891 (95% CI 0.799-0.983) for the novel disease activity score compared to 0.684 (95% CI 0.600-0.769) for the 10-year risk calculated according to the Framingham score. In patients suffering from symptomatic arteriosclerosis, the disease activity score deteriorated more rapidly after two years of follow-up (from 1.25 to 1.48, P = 0.005) compared to age- and sex-matched individuals free of cardiovascular events (from 1.09 to 1.19, P = 0.125). CONCLUSIONS/SIGNIFICANCE: Empiric clinical profiling and the disease activity score that are based on accessible, available and affordable clinical data are valid markers for symptomatic arteriosclerosis
Program design features that can improve participation in health education interventions
<p>Abstract</p> <p>Background</p> <p>Although there have been reported benefits of health education interventions across various health issues, the key to program effectiveness is participation and retention. Unfortunately, not everyone is willing to participate in health interventions upon invitation. In fact, health education interventions are vulnerable to low participation rates. The objective of this study was to identify design features that may increase participation in health education interventions and evaluation surveys, and to maximize recruitment and retention efforts in a general ambulatory population.</p> <p>Methods</p> <p>A cross-sectional questionnaire was administered to 175 individuals in waiting rooms of two hospitals diagnostic centres in Toronto, Canada. Subjects were asked about their willingness to participate, in principle, and the extent of their participation (frequency and duration) in health education interventions under various settings and in intervention evaluation surveys using various survey methods.</p> <p>Results</p> <p>The majority of respondents preferred to participate in one 30–60 minutes education intervention session a year, in hospital either with a group or one-on-one with an educator. Also, the majority of respondents preferred to spend 20–30 minutes each time, completing one to two evaluation surveys per year in hospital or by mail.</p> <p>Conclusion</p> <p>When designing interventions and their evaluation surveys, it is important to consider the preferences for setting, length of participation and survey method of your target population, in order to maximize recruitment and retention efforts. Study respondents preferred short and convenient health education interventions and surveys. Therefore, brevity, convenience and choice appear to be important when designing education interventions and evaluation surveys from the perspective of our target population.</p
Fate of phosphorus and potassium in single-pellet thermal conversion of forest residues with a focus on the char composition
The phosphorus and potassium contents of the char obtained from thermal conversion of forest residues can limit its utilization as an alternative fuel and reducing agent to substitute coal/coke in the steelmaking industry. In this study, ash transformation and release of K and P during single-pellet thermal conversion of different types of forest residues (i.e., bark, twigs, and bark+twigs) were investigated with the aid of a vertical tube furnace (Macro-TGA) at different temperatures (i.e., 600, 800, and 950 degrees C) and within and after different fuel conversion stages, i.e., devolatilization and char gasification. The residual char before and after full devolatilization, and ash after char gasification were characterized by SEM-EDS, XRD, and ICP-OES with the support of thermochemical equilibrium calculations. The concentrations of K (7970-19500 mg/kg) and P (1440-4925 mg/kg) in the char produced after devolatilization were more than four times higher than in coke and pulverized coal frequently used in metallurgical processes. A low amount of P and K (<= 15%) were released from all fuels. K and P were evenly distributed within the char residues, and no crystalline compounds containing K and P were found. In ash residues of bark, K was found in K2Ca2(CO3)3, and K2Ca(CO3)2. K in ash residues from twigs and bark+twigs was mainly found in the amorphous part of ash, most likely in the form of K-Ca rich silicates. Apatite was found as the main P crystalline compound in all ashes at all temperatures. Estimations show that a release of more than 80% is needed for the studied forest residual assortments to reach K and P concentrations typical of blast furnace coals and cokes
Systematic Evaluation of the Fate of Phosphorus in Fluidized Bed Combustion of Biomass and Sewage Sludge
Comprehensive knowledge concerning the behavior of phosphorus (P) during combustion is necessary to enable more efficient recovery of P from combustion ashes for agricultural purposes. To this end, parameters that influence the distribution and speciation of P in combustion ashes are important because they may influence which ash fractions are suitable for P recovery. This study aims to determine the fate of P as a result of fuel ash composition and chemical association in the fuel during fluidized bed combustion by a systemic review of previous work. The synthesis was performed by comparing scanning electron microscopy–energy-dispersive X-ray spectroscopy and X-ray diffraction chemical analyses of bed ash, fly ash particles, and deposits from fluidized bed combustion of different blends of P-poor (logging residues or wheat straw) and P-rich (sewage sludge, dried distiller’s grain with solubles, or phosphoric acid) fuels and additives. The blends were produced to have a similar ash composition but with a different P source. The distribution of P among ash fractions indicated that P is mainly found in the coarse ash fractions (bed and cyclone ash), irrespective of fuel ash composition or chemical association in the fuel. The chemical speciation of P in coarse ash fractions differed between biomass blends containing sewage sludge compared to blends with phosphoric acid or dried distiller’s grain with solubles. Phosphates in the ash from the two sewage sludge blends included predominantly Ca with minor inclusion of other cations. In contrast, ashes from the blends with phosphoric acid or dried distiller’s grain with solubles contained phosphates with a significant amount of K, Ca, and Mg. The difference in phosphate speciation could not solely be explained by the combustion conditions and the elemental composition of the ash fractions. These results show that it is necessary to consider the chemical association of P in the fuel to predict the type of phosphates that will form in fluidized bed combustion ashes
Layer Formation on Feldspar Bed Particles during Indirect Gasification of Wood. 1. K-Feldspar
The choice of bed material for biomass gasification plays a crucial role for the overall efficiency of the process. Olivine is the material conventionally used for biomass gasification due to the observed activity of olivine toward cracking of unwanted tars. Despite its catalytic activity, olivine contains high levels of chromium, which complicates the deposition of used bed material. Feldspar has shown the same activity as olivine when used as a bed material in biomass gasification. As opposed to olivine, feldspar does not contain environmentally hazardous compounds, which makes it a preferred alternative for further applications. The interaction of bed material and ash heavily influences the properties of the bed material. In the present study interactions between feldspar and main ash compounds of woody biomass in an indirect gasification system were investigated. Bed material samples were collected at different time intervals and analyzed with SEM-EDS and XRD. The obtained analysis results were then compared to thermodynamic models. The performed study was divided in two parts: in part 1 (the present paper), K-rich feldspar was investigated, whereas Na-rich feldspar is presented in part 2 of the study (DOI: 10.1021/ acs.energyfuels.9b01291). From the material analysis performed, it can be seen that, as a result of the bed materials’ interactions with the formed ash compounds, the latter were first deposited on the surface of the K-feldspar particles and later resulted in the formation of Ca- and Mg-rich layers. The Ca enriched in the layers further reacted with the feldspar, which led to its diffusion into the particles and the formation of CaSiO3 and KAlSiO4. Contrary to Ca, Mg did not react with the feldspar and remained on the surface of the particles, where it was found as Mg- or Ca-Mg-silicates. As a result of the described interactions, layer separation was noted after 51 h with an outer Mg-rich layer and an inner Ca-rich layer. Due to the development of the Ca- and Mg-rich layers and the bed material−ash interactions, crack formation was observed on the particles’ surfaces
- …