48 research outputs found

    Jaboticaba (Myrciaria jaboticaba) powder consumption improves the metabolic profile and regulates gut microbiome composition in high-fat diet-fed mice

    Get PDF
    The consumption of a high-fat diet can cause metabolic syndrome and induces host gut microbial dysbiosis and non-alcoholic fatty liver disease (NAFLD). We evaluated the effect of polyphenol-rich jaboticaba peel and seed powder (JPSP) on the gut microbial community composition and liver health in a mouse model of NAFLD. Three-month-old C57BL/6 J male mice, received either a control (C, 10% of lipids as energy, n = 16) or high-fat (HF, 50% of lipids as energy, n = 64) diet for nine weeks. The HF mice were randomly subdivided into four groups (n = 16 in each group), three of which (HF-J5, HF-J10, and HF-J15) were supplemented with dietary JPSP for four weeks (5%, 10%, and 15%, respectively). In addition to attenuating weight gain, JPSP consumption improved dyslipidemia and insulin resistance. In a dose-dependent manner, JPSP consumption ameliorated the expression of hepatic lipogenesis genes (AMPK, SREBP-1, HGMCoA, and ABCG8). The effects on the microbial community structure were determined in all JPSP-supplemented groups; however, the HF-J10 and HF-J15 diets led to a drastic depletion in the species of numerous bacterial families (Bifidobacteriaceae, Mogibacteriaceae, Christensenellaceae, Clostridiaceae, Dehalobacteriaceae, Peptococcaceae, Peptostreptococcaceae, and Ruminococcaceae) compared to the HF diet, some of which represented a reversal of increases associated with HF. The Lachnospiraceae and Enterobacteriaceae families and the Parabacteroides, Sutterella, Allobaculum, and Akkermansia genera were enriched more in the HF-J10 and HF-J15 groups than in the HF group. In conclusion, JPSP consumption improved obesity-related metabolic profiles and had a strong impact on the microbial community structure, thereby reversing NAFLD and decreasing its severity.This work was financially supported by Brazilian funding: FAPERJ – Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ: E-26/202.677/2018, E-26/010.002203/2019) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brazil (CAPES) – Finance code 001. Benjamin Willing was supported by the Canada Research Chair Program and his laboratory received funding from the Canadian Natural Science and Engineering Research Council (NSERC

    The role of resveratrol on skeletal muscle cell differentiation and myotube hypertrophy during glucose restriction

    Get PDF
    Glucose restriction (GR) impairs muscle cell differentiation and evokes myotube atrophy. Resveratrol treatment in skeletal muscle cells improves inflammatory-induced reductions in skeletal muscle cell differentiation. We therefore hypothesised that resveratrol treatment would improve muscle cell differentiation and myotube hypertrophy in differentiating C2C12 myoblasts and mature myotubes during GR. Glucose restriction at 0.6 g/L (3.3 mM) blocked differentiation and myotube hypertrophy versus high-glucose (4.5 g/L or 25 mM) differentiation media (DM) conditions universally used for myoblast culture. Resveratrol (10 μM) treatment increased SIRT1 phosphorylation in DM conditions, yet did not improve differentiation when administered to differentiating myoblasts in GR conditions. Resveratrol did evoke increases in hypertrophy of mature myotubes under DM conditions with corresponding elevated Igf-I and Myhc7 gene expression, coding for the ‘slow’ type I MYHC protein isoform. Inhibition of SIRT1 via EX-527 administration (100 nM) also reduced myotube diameter and area in DM conditions and resulted in lower gene expression of Myhc 1, 2 and 4 coding for ‘intermediate’ and ‘faster’ IIx, IIa and IIb protein isoforms, respectively. Resveratrol treatment did not appear to modulate phosphorylation of energy-sensing protein AMPK or protein translation initiator P70S6K. Importantly, in mature myotubes, resveratrol treatment was able to ameliorate reduced myotube growth in GR conditions over an acute 24-h period, but not over 48–72 h. Overall, resveratrol evoked myotube hypertrophy in DM conditions while favouring ‘slower’ Myhc gene expression and acutely ameliorated impaired myotube growth observed during glucose restriction

    Safety of Treatment Regimens Containing Bedaquiline and Delamanid in the endTB Cohort.

    Get PDF
    BACKGROUND: Safety of treatment for multidrug-resistant tuberculosis (MDR/RR-TB) can be an obstacle to treatment completion. Evaluate safety of longer MDR/RR-TB regimens containing bedaquiline and/or delamanid. METHODS: Multicentre (16 countries), prospective, observational study reporting incidence and frequency of clinically relevant adverse events of special interest (AESIs) among patients who received MDR/RR-TB treatment containing bedaquiline and/or delamanid. The AESIs were defined a priori as important events caused by bedaquiline, delamanid, linezolid, injectables, and other commonly used drugs. Occurrence of these events was also reported by exposure to the likely causative agent. RESULTS: Among 2296 patients, the most common clinically relevant AESIs were peripheral neuropathy (26.4%), electrolyte depletion (26.0%), and hearing loss (13.2%) with an incidence per 1000 person months of treatment, 1000 person-months of treatment 21.5 (95% confidence interval [CI]: 19.8-23.2), 20.7 (95% CI: 19.1-22.4), and 9.7 (95% CI: 8.6-10.8), respectively. QT interval was prolonged in 2.7% or 1.8 (95% CI: 1.4-2.3)/1000 person-months of treatment. Patients receiving injectables (N = 925) and linezolid (N = 1826) were most likely to experience events during exposure. Hearing loss, acute renal failure, or electrolyte depletion occurred in 36.8% or 72.8 (95% CI: 66.0-80.0) times/1000 person-months of injectable drug exposure. Peripheral neuropathy, optic neuritis, and/or myelosuppression occurred in 27.8% or 22.8 (95% CI: 20.9-24.8) times/1000 patient-months of linezolid exposure. CONCLUSIONS: AEs often related to linezolid and injectable drugs were more common than those frequently attributed to bedaquiline and delamanid. MDR-TB treatment monitoring and drug durations should reflect expected safety profiles of drug combinations. CLINICAL TRIALS REGISTRATION: NCT02754765

    P21-PARP-1 pathway is involved in cigarette smoke-induced lung DNA damage and cellular senescence

    Get PDF
    Persistent DNA damage triggers cellular senescence, which may play an important role in the pathogenesis of cigarette smoke (CS)-induced lung diseases. Both p21(CDKN1A) (p21) and poly(ADP-ribose) polymerase-1 (PARP-1) are involved in DNA damage and repair. However, the role of p21-PARP-1 axis in regulating CS-induced lung DNA damage and cellular senescence remains unknown. We hypothesized that CS causes DNA damage and cellular senescence through a p21-PARP-1 axis. To test this hypothesis, we determined the levels of γH2AX (a marker for DNA double-strand breaks) as well as non-homologous end joining proteins (Ku70 and Ku80) in lungs of mice exposed to CS. We found that the level of γH2AX was increased, whereas the level of Ku70 was reduced in lungs of CS-exposed mice. Furthermore, p21 deletion reduced the level of γH2AX, but augmented the levels of Ku70, Ku80, and PAR in lungs by CS. Administration of PARP-1 inhibitor 3-aminobenzamide increased CS-induced DNA damage, but lowered the levels of Ku70 and Ku80, in lungs of p21 knockout mice. Moreover, 3-aminobenzamide increased senescence-associated β-galactosidase activity, but decreased the expression of proliferating cell nuclear antigen in mouse lungs in response to CS. Interestingly, 3-aminobenzamide treatment had no effect on neutrophil influx into bronchoalveolar lavage fluid by CS. These results demonstrate that the p21-PARP-1 pathway is involved in CS-induced DNA damage and cellular senescence

    Neuroprotective effects of gacyclidine after experimental photochemical spinal cord lesion in adult rats: Dose-window and time-window effects

    No full text
    The aim of this study was to evaluate the efficacy, optimal dose, and optimal time-window of gacyclidine, a novel N-methyl-D-aspartate (NMDA) receptor antagonist, in terms of its functional, histopathological, and electrophysiological effects after experimental spinal cord injury. The spinal cord of rats was damaged by a photochemical method and the animals were treated by saline or gacyclidine at doses of 1, 2.5, or 5 mg/kg 10 min after injury or gacyclidine 1 mg/kg 10, 30, 60, and 120 min after injury. The time-course of the motor score (walking and inclined-plane stability) was evaluated until day 18, and somatosensory evoked potentials were determined on day 18. The animals were then sacrificed, and the cross-sectional area of the spinal cord (at the epicenter of the injury, above and below the injury) was measured. Walking recovery was better in most of the groups treated after injury than in the untreated injured animals. Motor performances were related to preservation of a larger undamaged area of spinal cord at the level of the injury and, interestingly, with prevention of extension of the anatomical lesion above the level of the injury. Somatosensory evoked potential amplitudes were often higher in treated groups. These results confirm that gacyclidine induces dose-dependent and time-dependent attenuation of spinal cord damage after an experimental vascular lesion. Although all three doses induced neuroprotective effects, recovery was greater and very homogeneous in the group treated with 1 mg/kg. Moreover, recovery was slightly better and more homogeneous within the groups treated 10 and 30 min after injury compared to the other groups. It appears that, according to the existing evidence, NMDA antagonists are an essential component in the elaboration of a neuroprotective strategy after spinal cord trauma

    Neuroprotective effects of gacyclidine after experimental photochemical spinal cord lesion in adult rats: Dose-window and time-window effects

    No full text
    The aim of this study was to evaluate the efficacy, optimal dose, and optimal time-window of gacyclidine, a novel N-methyl-D-aspartate (NMDA) receptor antagonist, in terms of its functional, histopathological, and electrophysiological effects after experimental spinal cord injury. The spinal cord of rats was damaged by a photochemical method and the animals were treated by saline or gacyclidine at doses of 1, 2.5, or 5 mg/kg 10 min after injury or gacyclidine 1 mg/kg 10, 30, 60, and 120 min after injury. The time-course of the motor score (walking and inclined-plane stability) was evaluated until day 18, and somatosensory evoked potentials were determined on day 18. The animals were then sacrificed, and the cross-sectional area of the spinal cord (at the epicenter of the injury, above and below the injury) was measured. Walking recovery was better in most of the groups treated after injury than in the untreated injured animals. Motor performances were related to preservation of a larger undamaged area of spinal cord at the level of the injury and, interestingly, with prevention of extension of the anatomical lesion above the level of the injury. Somatosensory evoked potential amplitudes were often higher in treated groups. These results confirm that gacyclidine induces dose-dependent and time-dependent attenuation of spinal cord damage after an experimental vascular lesion. Although all three doses induced neuroprotective effects, recovery was greater and very homogeneous in the group treated with 1 mg/kg. Moreover, recovery was slightly better and more homogeneous within the groups treated 10 and 30 min after injury compared to the other groups. It appears that, according to the existing evidence, NMDA antagonists are an essential component in the elaboration of a neuroprotective strategy after spinal cord trauma

    Metformin Blocks Melanoma Invasion and Metastasis Development in AMPK/p53-Dependent Manner

    No full text
    International audienceMetformin was reported to inhibit the proliferation of many cancer cells, including melanoma cells. In this report, we investigated the effect of metformin on melanoma invasion and metastasis development. Using different in vitro approaches, we found that metformin inhibits cell invasion without affecting cell migration and independently of antiproliferation action. This inhibition is correlated with modulation of expression of proteins involved in epithelial-mesenchymal transition such as Slug, Snail, SPARC, fibronectin, and N-cadherin and with inhibition of MMP-2 and MMP-9 activation. Furthermore, our data indicate that this process is dependent on activation of AMPK and tumor suppressor protein p53. Finally, we showed that metformin inhibits melanoma metastasis development in mice using extravasation and metastasis models. The presented data reinforce the fact that metformin might be a good candidate for clinical trial in melanoma treatment

    Cancer cell-derived long pentraxin 3 (PTX3) promotes melanoma migration through a toll-like receptor 4 (TLR4)/NF-kappa B signaling pathway

    No full text
    Cutaneous melanoma is one of the most aggressive cancers characterized by a high plasticity, a propensity for metastasis, and drug resistance. Melanomas are composed of phenotypically diverse subpopulations of tumor cells with heterogeneous molecular profiles that reflect intrinsic invasive abilities. In an attempt to identify novel factors of the melanoma invasive cell state, we previously investigated the nature of the invasive secretome by using a comparative proteomic approach. Here, we have extended this analysis to show that PTX3, an acute phase inflammatory glycoprotein, is one such factor secreted by invasive melanoma to promote tumor cell invasiveness. Elevated PTX3 production was observed in the population of MITFlow invasive cells but not in the population of MITFhigh differentiated melanoma cells. Consistently, MITF knockdown increased PTX3 expression in MITFhigh proliferative and poorly invasive cells. High levels of PTX3 were found in tissues and blood of metastatic melanoma patients, and in BRAF inhibitor-resistant melanoma cells displaying a mesenchymal invasive MITFlow phenotype. Genetic silencing of PTX3 in invasive melanoma cells dramatically impaired migration and invasion in vitro and in experimental lung extravasation assay in xenografted mice. In contrast, addition of melanoma-derived or recombinant PTX3, or expression of PTX3 enhanced motility of low migratory cells. Mechanistically, autocrine production of PTX3 by melanoma cells triggered an IKIC/NF kappa B signaling pathway that promotes migration, invasion, and expression of the EMT factor TWIST1. Finally, we found that TLR4 and MYD88 knockdown inhibited PTX3-induced melanoma cell migration, suggesting that PTX3 functions through a TLR4-dependent pathway. Our work reveals that tumor-derived PTX3 contributes to melanoma cell invasion via targetable inflammation-related pathways. In addition to providing new insights into the biology of melanoma invasive behavior, this study underscores the notion that secreted PTX3 represents a potential biomarker and therapeutic target in a subpopulation of MITFlow invasive and/or refractory melanoma
    corecore