1,324 research outputs found
Effect of multiple transverse modes in self-mixing sensors based on vertical-cavity surface-emitting lasers
We investigate the effect of coexisting transverse modes on the operation of self-mixing sensors based on vertical-cavity surface-emitting lasers (VCSELs). The effect of multiple transverse modes on the measurement of displacement and distance were examined by simulation and in laboratory experiment. The simulation model shows that the periodic change in the shape and magnitude of the self-mixing signal with modulation current can be properly explained by the different frequency-modulation coefficients of the respective transverse modes in VCSELs. The simulation results are in excellent agreement with measurements performed on single-mode and multimode VCSELs and on self-mixing sensors based on these VCSELs
The holographic superconductors in higher-dimensional AdS soliton
We explore the behaviors of the holographic superconductors at zero
temperature for a charged scalar field coupled to a Maxwell field in
higher-dimensional AdS soliton spacetime via analytical way. In the probe
limit, we obtain the critical chemical potentials increase linearly as a total
dimension grows up. We find that the critical exponent for condensation
operator is obtained as 1/2 independently of , and the charge density is
linearly related to the chemical potential near the critical point.
Furthermore, we consider a slightly generalized setup the
Einstein-Power-Maxwell field theory, and find that the critical exponent for
condensation operator is given as in terms of a power parameter
of the Power-Maxwell field, and the charge density is proportional to the
chemical potential to the power of .Comment: LaTeX, 16 pages, 5 figures, typos corrected, one reference added,
version to appear in European Physical Journal
Time and Amplitude of Afterpulse Measured with a Large Size Photomultiplier Tube
We have studied the afterpulse of a hemispherical photomultiplier tube for an
upcoming reactor neutrino experiment. The timing, the amplitude, and the rate
of the afterpulse for a 10 inch photomultiplier tube were measured with a 400
MHz FADC up to 16 \ms time window after the initial signal generated by an LED
light pulse. The time and amplitude correlation of the afterpulse shows several
distinctive groups. We describe the dependencies of the afterpulse on the
applied high voltage and the amplitude of the main light pulse. The present
data could shed light upon the general mechanism of the afterpulse.Comment: 11 figure
A detailed kinematic study of 3C 84 and its connection to γ-rays
3C 84 (NGC 1275) is the bright radio core of the Perseus cluster. Even in the absence of strong relativistic effects, the source has been detected at γ-rays up to TeV energies. Despite its intensive study, the physical processes responsible for the high-energy emission in the source remain unanswered. We present a detailed kinematics study of the source and its connection to γ-ray emission. The subparsec-scale radio structure is dominated by slow-moving features in both the eastern and western lanes of the jet. The jet appears to have accelerated to its maximum speed within less than 125,000 gravitational radii. The fastest reliably detected speed in the jet was ∼0.9c. This leads to a minimum viewing angle to the source of ≳42° and a maximum Doppler factor of ≲1.5. Our analysis suggests the presence of multiple high-energy sites in the source. If γ-rays are associated with kinematic changes in the jet, they are being produced in both eastern and western lanes in the jet. Three γ-ray flares are contemporaneous with epochs where the slowly moving emission region splits into two subregions. We estimate the significance of these events being associated to be ∼2σ–3σ. We tested our results against theoretical predictions for magnetic-reconnection-induced mini-jets and turbulence and find them compatible.https://iopscience.iop.org/article/10.3847/1538-4357/abf6dd/pdfPublished versio
RG flows from Spin(7), CY 4-fold and HK manifolds to AdS, Penrose limits and pp waves
We obtain explicit realizations of holographic renormalization group (RG)
flows from M-theory, from E^{2,1} \times Spin(7) at UV to AdS_4 \times
\tilde{S^7} (squashed S^7) at IR, from E^{2,1} \times CY4 at UV to AdS_4 \times
Q^{1,1,1} at IR, and from E^{2,1} \times HK (hyperKahler) at UV to AdS_4 \times
N^{0,1,0} at IR. The dual type IIA string theory configurations correspond to
D2-D6 brane systems where D6 branes wrap supersymmetric four-cycles. We also
study the Penrose limits and obtain the pp-wave backgrounds for the above
configurations. Besides, we study some examples of non-supersymmetric and
supersymmetric flows in five-dimensional gauge theories.Comment: 42 pages, 6 eps figures, typos and misprints correcte
Vector meson production and nucleon resonance analysis in a coupled-channel approach for energies m_N < sqrt(s) < 2 GeV II: photon-induced results
We present a nucleon resonance analysis by simultaneously considering all
pion- and photon-induced experimental data on the final states gamma N, pi N, 2
pi N, eta N, K Lambda, K Sigma, and omega N for energies from the nucleon mass
up to sqrt(s) = 2 GeV. In this analysis we find strong evidence for the
resonances P_{31}(1750), P_{13}(1900), P_{33}(1920), and D_{13}(1950). The
omega N production mechanism is dominated by large P_{11}(1710) and
P_{13}(1900) contributions. In this second part we present the results on the
photoproduction reactions and the electromagnetic properties of the resonances.
The inclusion of all important final states up to sqrt(s) = 2 GeV allows for
estimates on the importance of the individual states for the GDH sum rule.Comment: 41 pages, 26 figures, discussion extended, typos corrected,
references updated, to appear in Phys. Rev.
A Taxonomy of Causality-Based Biological Properties
We formally characterize a set of causality-based properties of metabolic
networks. This set of properties aims at making precise several notions on the
production of metabolites, which are familiar in the biologists' terminology.
From a theoretical point of view, biochemical reactions are abstractly
represented as causal implications and the produced metabolites as causal
consequences of the implication representing the corresponding reaction. The
fact that a reactant is produced is represented by means of the chain of
reactions that have made it exist. Such representation abstracts away from
quantities, stoichiometric and thermodynamic parameters and constitutes the
basis for the characterization of our properties. Moreover, we propose an
effective method for verifying our properties based on an abstract model of
system dynamics. This consists of a new abstract semantics for the system seen
as a concurrent network and expressed using the Chemical Ground Form calculus.
We illustrate an application of this framework to a portion of a real
metabolic pathway
Superstrings on PP-Wave Backgrounds and Symmetric Orbifolds
We study the superstring theory on pp-wave background with NSNS-flux that is
realized as the Penrose limit of AdS_3 x S^3 x M^4, where M^4 is T^4 or
T^4/Z_2(~ K3). Quantizing this system in the covariant gauge, we explicitly
construct the space-time supersymmetry algebra and the complete set of DDF
operators. We analyse the spectrum of physical states by using the spectrally
flowed representations of current algebra. This spectrum is classified by the
``short string sectors'' and the ``long string sectors'' as in AdS_3 string
theory. The states of the latter propagate freely along the transverse plane of
pp-wave background, but the states of the former do not. We compare the short
string spectrum with the BPS and almost BPS states which have large R-charges
in the symmetric orbifold conformal theory, which is known as the candidate of
dual theory of superstrings on AdS_3 x S^3 x M^4. We show that every short
string states can be embedded successfully in the single particle Hilbert space
of symmetric orbifold conformal theory.Comment: Latex, 35 pages, minor change
Spallation reactions. A successful interplay between modeling and applications
The spallation reactions are a type of nuclear reaction which occur in space
by interaction of the cosmic rays with interstellar bodies. The first
spallation reactions induced with an accelerator took place in 1947 at the
Berkeley cyclotron (University of California) with 200 MeV deuterons and 400
MeV alpha beams. They highlighted the multiple emission of neutrons and charged
particles and the production of a large number of residual nuclei far different
from the target nuclei. The same year R. Serber describes the reaction in two
steps: a first and fast one with high-energy particle emission leading to an
excited remnant nucleus, and a second one, much slower, the de-excitation of
the remnant. In 2010 IAEA organized a worskhop to present the results of the
most widely used spallation codes within a benchmark of spallation models. If
one of the goals was to understand the deficiencies, if any, in each code, one
remarkable outcome points out the overall high-quality level of some models and
so the great improvements achieved since Serber. Particle transport codes can
then rely on such spallation models to treat the reactions between a light
particle and an atomic nucleus with energies spanning from few tens of MeV up
to some GeV. An overview of the spallation reactions modeling is presented in
order to point out the incomparable contribution of models based on basic
physics to numerous applications where such reactions occur. Validations or
benchmarks, which are necessary steps in the improvement process, are also
addressed, as well as the potential future domains of development. Spallation
reactions modeling is a representative case of continuous studies aiming at
understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie
Single Spin Asymmetry in Polarized Proton-Proton Elastic Scattering at GeV
We report a high precision measurement of the transverse single spin
asymmetry at the center of mass energy GeV in elastic
proton-proton scattering by the STAR experiment at RHIC. The was measured
in the four-momentum transfer squared range \GeVcSq, the region of a significant interference between the
electromagnetic and hadronic scattering amplitudes. The measured values of
and its -dependence are consistent with a vanishing hadronic spin-flip
amplitude, thus providing strong constraints on the ratio of the single
spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated
by the Pomeron amplitude at this , we conclude that this measurement
addresses the question about the presence of a hadronic spin flip due to the
Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure
- …