1,835 research outputs found

    Quantum Photovoltaic Cells Driven by Photon Pulses

    Full text link
    We investigate the quantum thermodynamics of two quantum systems, a two-level system and a four-level quantum photocell, each driven by photon pulses as a quantum heat engine. We set these systems to be in thermal contact only with a cold reservoir while the heat (energy) source, conventionally given from a hot thermal reservoir, is supplied by a sequence of photon pulses. The dynamics of each system is governed by a coherent interaction due to photon pulses in terms of the Jaynes-Cummings Hamiltonian together with the system-bath interaction described by the Lindblad master equation. We calculate the thermodynamic quantities for the two-level system and the quantum photocell including the change in system energy, power delivered by photon pulses, power output to an external load, heat dissipated to a cold bath, and entropy production. We thereby demonstrate how a quantum photocell in the cold bath can operate as a continuum quantum heat engine with the sequence of photon pulses continuously applied. We specifically introduce the power efficiency of the quantum photocell in terms of the ratio of output power delivered to an external load with current and voltage to the input power delivered by the photon pulse. Our study indicates a possibility that a quantum system driven by external fields can act as an efficient quantum heat engine under non-equilibrium thermodynamics.Comment: 10 pages, 8 figures, submitte

    Preaching as interaction between church and culture: with specific reference to the Korean church

    Get PDF
    The Korean church, famous for her rapid growth, has begun to notice a downward trend in her growth rate since the mid-eighties. Although many reputable investigations have recently been carried out with regard to this downward slide, these investigations have overlooked the full meaning of preaching in the interaction between church and culture. In view of this, this study sets the following four aims: (1) to investigate the reasons behind church decline in terms of preaching in the interaction between church and culture in Korea; (2) to interpret preaching in the interaction between church and culture biblically, historically and theologically in order to understand the normative Christian perceptions and practices of preaching; (3) to attempt an integration between the descriptive and the normative; and (4) to propose developmental strategies for the Korean church. To achieve these purposes, two kinds of methods are employed in this study: (a) an analysis of preaching in the interaction between church and culture both in Korea and in the normative Christian sources, with the model advocated by D Browning (1991); and (b) qualitative interviewing as an empirical interpretation with a model based on the findings of Rubin&Rubin (1995). Five claims emerge from this study: (1) How do we reset the context of preaching? (2) How do we revise the present preaching theory of the Korean church? (3) How do we define and defend conversion preaching that is seemingly exclusive in contemporary pluralistic Korean society? (4) How do we rethink and re-establish the ecclesiology of the Korean church? (5) How do we formulate the Christian culture against or in the rage of worldly thoughts and cultures in Korea? This thesis concludes by proposing preaching as interaction and the preacher as an inter-actor between church and culture. Practical strategies are developed to answer the claims.Thesis (PhD (Practical Theology))--University of Pretoria, 2005.Practical Theologyunrestricte

    Optimal Gaussian measurements for phase estimation in single-mode Gaussian metrology

    Get PDF
    The central issue in quantum parameter estimation is to find out the optimal measurement setup that leads to the ultimate lower bound of an estimation error. We address here a question of whether a Gaussian measurement scheme can achieve the ultimate bound for phase estimation in single-mode Gaussian metrology that exploits single-mode Gaussian probe states in a Gaussian environment. We identify three types of optimal Gaussian measurement setups yielding the maximal Fisher information depending on displacement, squeezing, and thermalization of the probe state. We show that the homodyne measurement attains the ultimate bound for both displaced thermal probe states and squeezed vacuum probe states, whereas for the other single-mode Gaussian probe states, the optimized Gaussian measurement cannot be the optimal setup, although they are sometimes nearly optimal. We then demonstrate that the measurement on the basis of the product quadrature operators XP+PX, i.e., a non-Gaussian measurement, is required to be fully optimal.Comment: 13 pages, 6 figure

    Effect of flow-field structure on discharging and charging behavior of hydrogen/bromine redox flow batteries

    Full text link
    Designing and optimizing the flow-field structure for the liquid phase Br2/HBr electrolyte solution of H2/Br2 redox flow batteries (RFBs) is important for improving cell performance. In this study, two electrolyte flow modes, i.e. the flow-by and flow-through modes, are simulated by using a three-dimensional H2/Br2 RFB model. The model is first applied to real-scale H2/Br2 cell geometries and then validated against the experimental polarization curves acquired using the two different flow modes. The model predictions compare well with the experimental data and further highlight the advantages of using the flow-through mode relative to the flow-by mode. Detailed multi-dimensional contours of the electrolyte flow velocity and key species distributions reveal that more uniform diffusion and stronger convective transport are achieved by using the flow-through mode, which alleviates the ohmic loss associated with charge transport in the Br2 electrode

    Microstructural evolution induced by micro-cracking during fast lithiation of single-crystalline silicon

    Get PDF
    h i g h l i g h t s Lithiation of Si results in various microstructures depending of crystal orientation. A complex vein-like microstructure of Li x Si was observed in {100} oriented Si. Micro-cracks provide a fast path for Li diffusion and cause a non-uniform lithiation. Crystalline Li x Si plays an important role in micro-crack generation. a r t i c l e i n f o t r a c t We report observations of microstructural changes in {100} and {110} oriented silicon wafers during initial lithiation under relatively high current densities. Evolution of the microstructure during lithiation was found to depend on the crystallographic orientation of the silicon wafers. In {110} silicon wafers, the phase boundary between silicon and Li x Si remained flat and parallel to the surface. In contrast, lithiation of the {100} oriented substrate resulted in a complex vein-like microstructure of Li x Si in a crystalline silicon matrix. A simple calculation demonstrates that the formation of such structures is energetically unfavorable in the absence of defects due to the large hydrostatic stresses that develop. However, TEM observations revealed micro-cracks in the {100} silicon wafer, which can create fast diffusion paths for lithium and contribute to the formation of a complex vein-like Li x Si network. This defect-induced microstructure can significantly affect the subsequent delithiation and following cycles, resulting in degradation of the electrode

    Establishing ZIF-8 as a reference material for hydrogen cryoadsorption: An interlaboratory study

    Get PDF
    Hydrogen storage by cryoadsorption on porous materials has the advantages of low material cost, safety, fast kinetics, and high cyclic stability. The further development of this technology requires reliable data on the H2 uptake of the adsorbents, however, even for activated carbons the values between different laboratories show sometimes large discrepancies. So far no reference material for hydrogen cryoadsorption is available. The metal-organic framework ZIF-8 is an ideal material possessing high thermal, chemical, and mechanical stability that reduces degradation during handling and activation. Here, we distributed ZIF-8 pellets synthesized by extrusion to 9 laboratories equipped with 15 different experimental setups including gravimetric and volumetric analyzers. The gravimetric H2 uptake of the pellets was measured at 77 K and up to 100 bar showing a high reproducibility between the different laboratories, with a small relative standard deviation of 3–4 % between pressures of 10–100 bar. The effect of operating variables like the amount of sample or analysis temperature was evaluated, remarking the calibration of devices and other correction procedures as the most significant deviation sources. Overall, the reproducible hydrogen cryoadsorption measurements indicate the robustness of the ZIF-8 pellets, which we want to propose as a reference material.M. Maiwald, J. A. Villajos, R. Balderas and M. Hirscher acknowledge the EMPIR programme from the European Union's Horizon 2020 research and innovation programme for funding. F. Cuevas and F. Couturas acknowledge support from France 2030 program under project ANR-22-PEHY-0007. D. Cazorla and A. Berenguer-Murcia thank the support by PID2021-123079OB-I00 project funded by MCIN/AEI/10.13039/501100011033, and “ERDF A way of making Europe”. K. N. Heinselman, S. Shulda and P. A. Parilla acknowledge the support from the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Hydrogen and Fuel Cell Technology Office through the HyMARC Energy Materials Network

    Interplay of Linker Functionalization and Hydrogen Adsorption in the Metal–Organic Framework MIL-101

    Get PDF
    Functionalization of metal–organic frameworks results in higher hydrogen uptakes owing to stronger hydrogen–host interactions. However, it has not been studied whether a given functional group acts on existing adsorption sites (linker or metal) or introduces new ones. In this work, the effect of two types of functional groups on MIL-101 (Cr) is analyzed. Thermal-desorption spectroscopy reveals that the −Br ligand increases the secondary building unit’s hydrogen affinity, while the −NH2 functional group introduces new hydrogen adsorption sites. In addition, a subsequent introduction of −Br and −NH2 ligands on the linker results in the highest hydrogen-store interaction energy on the cationic nodes. The latter is attributed to a push-and-pull effect of the linkers

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis
    corecore