124 research outputs found

    Enhancement of autophagy is a potential modality for tumors refractory to radiotherapy

    Get PDF
    Radiotherapy is a well-established treatment for cancer. However, the existence of radioresistant cells is one of the major obstacles in radiotherapy. In order to understand the mechanism of cellular radioresistance and develop more effective radiotherapy, we have established clinically relevant radioresistant (CRR) cell lines, which continue to proliferate under daily exposure to 2 Gray (Gy) of X-rays for >30 days. X-ray irradiation significantly induced autophagic cells in parental cells, which was exiguous in CRR cells, suggesting that autophagic cell death is involved in cellular radiosensitivity. An autophagy inducer, rapamycin sensitized CRR cells to the level of parental cells and suppressed cell growth. An autophagy inhibitor, 3-methyladenine induced radioresistance of parental cells. Furthermore, inhibition of autophagy by knockdown of Beclin-1 made parental cells radioresistant to acute radiation. These suggest that the suppression of autophagic cell death but not apoptosis is mainly involved in cellular radioresistance. Therefore, the enhancement of autophagy may have a considerable impact on the treatment of radioresistant tumor

    The association between baseline persistent pain and weight change in patients attending a specialist weight management service

    Get PDF
    To quantify the influence of baseline pain levels on weight change at one-year follow-up in patients attending a National Health Service specialist weight management programme.We compared one-year follow-up weight (body mass) change between patient sub-groups of none-to-mild, moderate, and severe pain at baseline. A mean sub-group difference in weight change of ≥5kg was considered clinically relevant.Of the 141 complete cases, n = 43 (30.5%) reported none-to-mild pain, n = 44 (31.2%) reported moderate pain, and n = 54 (38.3%) reported severe pain. Covariate-adjusted mean weight loss (95%CI) was similar for those with none-to-mild (8.1kg (4.2 to 12.0kg)) and moderate pain (8.3kg (4.9 to 11.7kg). The mean weight loss of 3.0kg (-0.4 to 6.4kg) for the severe pain group was 5.1kg (-0.6 to 10.7, p = 0.08) lower than the none-to-mild pain group and 5.3kg (0.4 to 10.2kg, p = 0.03) lower than the moderate pain group.Patients with severe pain upon entry to a specialist weight management service in England achieve a smaller mean weight loss at one-year follow-up than those with none-to-moderate pain. The magnitude of the difference in mean weight loss was clinically relevant, highlighting the importance of addressing severe persistent pain in obese patients undertaking weight management programmes

    Combined NADPH Oxidase 1 and Interleukin 10 Deficiency Induces Chronic Endoplasmic Reticulum Stress and Causes Ulcerative Colitis-Like Disease in Mice

    Get PDF
    Ulcerative colitis (UC) is a chronic inflammatory bowel disease affecting the rectum which progressively extents. Its etiology remains unknown and the number of treatments available is limited. Studies of UC patients have identified an unbalanced endoplasmic reticulum (ER) stress in the non-inflamed colonic mucosa. Animal models with impaired ER stress are sensitive to intestinal inflammation, suggesting that an unbalanced ER stress could cause inflammation. However, there are no ER stress-regulating strategies proposed in the management of UC partly because of the lack of relevant preclinical model mimicking the disease. Here we generated the IL10/Nox1(dKO) mouse model which combines immune dysfunction (IL-10 deficiency) and abnormal epithelium (NADPH oxidase 1 (Nox1) deficiency) and spontaneously develops a UC-like phenotype with similar complications (colorectal cancer) than UC. Our data identified an unanticipated combined role of IL10 and Nox1 in the fine-tuning of ER stress responses in goblet cells. As in humans, the ER stress was unbalanced in mice with decreased eIF2 alpha phosphorylation preceding inflammation. In IL10/Nox1(dKO) mice, salubrinal preserved eIF2 alpha phosphorylation through inhibition of the regulatory subunit of the protein phosphatase 1 PP1R15A/GADD34 and prevented colitis. Thus, this new experimental model highlighted the central role of epithelial ER stress abnormalities in the development of colitis and defined the defective eIF2 alpha pathway as a key pathophysiological target for UC. Therefore, specific regulators able to restore the defective eIF2 alpha pathway could lead to the molecular remission needed to treat UC

    A voting approach to identify a small number of highly predictive genes using multiple classifiers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microarray gene expression profiling has provided extensive datasets that can describe characteristics of cancer patients. An important challenge for this type of data is the discovery of gene sets which can be used as the basis of developing a clinical predictor for cancer. It is desirable that such gene sets be compact, give accurate predictions across many classifiers, be biologically relevant and have good biological process coverage.</p> <p>Results</p> <p>By using a new type of multiple classifier voting approach, we have identified gene sets that can predict breast cancer prognosis accurately, for a range of classification algorithms. Unlike a wrapper approach, our method is not specialised towards a single classification technique. Experimental analysis demonstrates higher prediction accuracies for our sets of genes compared to previous work in the area. Moreover, our sets of genes are generally more compact than those previously proposed. Taking a biological viewpoint, from the literature, most of the genes in our sets are known to be strongly related to cancer.</p> <p>Conclusion</p> <p>We show that it is possible to obtain superior classification accuracy with our approach and obtain a compact gene set that is also biologically relevant and has good coverage of different biological processes.</p

    Potentiation of Epithelial Innate Host Responses by Intercellular Communication

    Get PDF
    The epithelium efficiently attracts immune cells upon infection despite the low number of pathogenic microbes and moderate levels of secreted chemokines per cell. Here we examined whether horizontal intercellular communication between cells may contribute to a coordinated response of the epithelium. Listeria monocytogenes infection, transfection, and microinjection of individual cells within a polarized intestinal epithelial cell layer were performed and activation was determined at the single cell level by fluorescence microscopy and flow cytometry. Surprisingly, chemokine production after L. monocytogenes infection was primarily observed in non-infected epithelial cells despite invasion-dependent cell activation. Whereas horizontal communication was independent of gap junction formation, cytokine secretion, ion fluxes, or nitric oxide synthesis, NADPH oxidase (Nox) 4-dependent oxygen radical formation was required and sufficient to induce indirect epithelial cell activation. This is the first report to describe epithelial cell-cell communication in response to innate immune activation. Epithelial communication facilitates a coordinated infectious host defence at the very early stage of microbial infection

    Requirement of NOX2 and Reactive Oxygen Species for Efficient RIG-I-Mediated Antiviral Response through Regulation of MAVS Expression

    Get PDF
    The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune response. Induction of antiviral genes is a tightly regulated process initiated mainly through sensing of invading virus nucleic acids in the cytoplasm by RIG-I like helicases, RIG-I or Mda5, which transmit the signal through a common mitochondria-associated adaptor, MAVS. Although major breakthroughs have recently been made, much remains unknown about the mechanisms that translate virus recognition into antiviral genes expression. Beside the reputed detrimental role, reactive oxygen species (ROS) act as modulators of cellular signaling and gene regulation. NADPH oxidase (NOX) enzymes are a main source of deliberate cellular ROS production. Here, we found that NOX2 and ROS are required for the host cell to trigger an efficient RIG-I-mediated IRF-3 activation and downstream antiviral IFNβ and IFIT1 gene expression. Additionally, we provide evidence that NOX2 is critical for the expression of the central mitochondria-associated adaptor MAVS. Taken together these data reveal a new facet to the regulation of the innate host defense against viruses through the identification of an unrecognized role of NOX2 and ROS

    Control of anterior GRadient 2 (AGR2) dimerization links endoplasmic reticulum proteostasis to inflammation

    Get PDF
    International audienceAnterior gradient 2 (AGR2) is a dimeric protein disulfide isomerase family member involved in the regulation of protein quality control in the endoplasmic reticulum (ER). Mouse AGR2 deletion increases intestinal inflammation and promotes the development of inflammatory bowel disease (IBD). Although these biological effects are well established, the underlying molecular mechanisms of AGR2 function toward inflammation remain poorly defined. Here, using a protein-protein interaction screen to identify cellular regulators of AGR2 dimerization, we unveiled specific enhancers, including TMED2, and inhibitors of AGR2 dimerization, that control AGR2 functions. We demonstrate that modulation of AGR2 dimer formation, whether enhancing or inhibiting the process, yields pro-inflammatory phenotypes, through either autophagy-dependent processes or secretion of AGR2, respectively. We also demonstrate that in IBD and specifically in Crohn's disease, the levels of AGR2 dimerization modulators are selectively deregulated, and this correlates with severity of disease. Our study demonstrates that AGR2 dimers act as sensors of ER homeostasis which are disrupted upon ER stress and promote the secretion of AGR2 monomers. The latter might represent systemic alarm signals for pro-inflammatory responses
    corecore