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Université Louis Pasteur, Strasbourg, France, 11 INSERM, U843 Hôpital R. Debré, Paris, France, 12 Service d’Anatomo-Pathologie, Hôpital Beaujon, Clichy, France

Abstract

Ulcerative colitis (UC) is a chronic inflammatory bowel disease affecting the rectum which progressively extents. Its etiology
remains unknown and the number of treatments available is limited. Studies of UC patients have identified an unbalanced
endoplasmic reticulum (ER) stress in the non-inflamed colonic mucosa. Animal models with impaired ER stress are sensitive
to intestinal inflammation, suggesting that an unbalanced ER stress could cause inflammation. However, there are no ER
stress-regulating strategies proposed in the management of UC partly because of the lack of relevant preclinical model
mimicking the disease. Here we generated the IL10/Nox1dKO mouse model which combines immune dysfunction (IL-10
deficiency) and abnormal epithelium (NADPH oxidase 1 (Nox1) deficiency) and spontaneously develops a UC-like phenotype
with similar complications (colorectal cancer) than UC. Our data identified an unanticipated combined role of IL10 and Nox1
in the fine-tuning of ER stress responses in goblet cells. As in humans, the ER stress was unbalanced in mice with decreased
eIF2a phosphorylation preceding inflammation. In IL10/Nox1dKO mice, salubrinal preserved eIF2a phosphorylation through
inhibition of the regulatory subunit of the protein phosphatase 1 PP1R15A/GADD34 and prevented colitis. Thus, this new
experimental model highlighted the central role of epithelial ER stress abnormalities in the development of colitis and
defined the defective eIF2a pathway as a key pathophysiological target for UC. Therefore, specific regulators able to restore
the defective eIF2a pathway could lead to the molecular remission needed to treat UC.
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Introduction

Ulcerative colitis (UC) is the most common chronic inflamma-

tory disorder affecting exclusively the colon [1]. UC is a complex

disease due to deregulated interactions between epithelial cells,

immune and environmental factors. UC is mainly characterized

by: 1) universal rectal involvement with upstream colonic lesions,

2) superficial colonic mucosal inflammatory damage, 3) early

goblet cell alterations even in non-inflamed colonic tissues, 4)

polymorphonuclear infiltrates and crypt abscesses at the acute

inflammatory stage, 5) disease onset and outcome prevented by

tobacco smoking and appendicitis at a young age and 6) long-term

increased risk of developing colonic dysplasia/cancer.

A growing body of evidence suggests that the colonic epithelial

homeostasis could be a critical element mediating protection from

detrimental environmental factors and regulating underlying

inflammatory responses in UC [2,3,4,5]. Colonic epithelial cells,

and especially goblet cells whose secretory functions depend on

protein synthesis, have developed evolved mechanisms to cope

with cellular stresses such as the ER stress and inflammation. It is

now evident that an unresolved ER stress in intestinal epithelial

cells associated with altered unfolded protein response (UPR)
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activation, a process induced by three ER proximal sensors

PERK, ATF6, and IRE1 [6], can lead to or induce a sensitivity to

colonic inflammation both in animals [3,4,7,8,9,10,11] and

humans [4,5]. Paradoxically, partial or total goblet cell depletion

does not cause spontaneous colitis [12,13] and can even reduce

dextran sodium sulfate-induced colonic injury [13] suggesting that

the predisposition to colitis might be promoted in the goblet cells

themselves due to their inability to provide protection against

environmental factors. Recently, IL-10 has been shown to play a

central role in goblet cell homeostasis by suppressing the ER stress

and promoting intestinal mucus production [2,9,14]. Moreover,

IL-10 polymorphisms and rarer mutations in the IL-10 and IL-10R

genes have been associated with inflammatory bowel diseases

(IBD) [15,16] and severe enterocolitis in infants [17], respectively.

Furthermore, mice lacking IL-10 spontaneously develop colon and

ileum inflammation similar to Crohn’s disease [18]. The current

paradigm for the regulatory roles of IL-10 in epithelial cell

homeostasis [19] and ER stress response in goblet cells [2,14]

reinforces the central role of the epithelial barrier in UC

pathogenesis.

We have previously shown that the NADPH oxidase 1 (Nox1), a

reactive oxygen species (ROS)-producing oxidase highly expressed

in colonic epithelial cells, controls the balance between goblet and

absorptive cells in the colon by coordinately modulating the

PI3K/AKT/Wnt/beta-catenin and Notch1 signaling pathways

[20]. Nox1-deficient (Nox1KO) mice show a massive conversion of

progenitor cells into functional goblet cells without developing any

colitis [20]. A growing body of evidence indicates close functional

links between Nox1 and intestinal epithelial cells. Jones et al. [21]

have recently shown that the commensal Lactobacillus spp. can

stimulate Nox1-dependent ROS production and subsequent

intestinal stem cell proliferation, highlighting the important role

of Nox1 in critical ROS-mediated colonic homeostatic processes.

Furthermore, Leoni et al. [22] have shown the central role of

intestinal epithelial Nox1 in facilitating ROS-dependent mucosal

epithelial wound repair mediated by gut microbiota-induced N-

formyl peptide receptors [22]. Importantly, ROS production by

Nox enzymes is critical to control the mucin granule accumulation

and release in colonic goblet cells [23]. Moreover, NOX1

expression follows the same colonic gradient than the thickness

of the mucus layer secreted by goblet cells [24] and UC lesions.

Taken together, these findings suggest that a suitable UC model

would show goblet cell accumulation and would be highly

susceptible to inflammation. For these reasons, we combined

Nox1 and IL-10 gene deletion to generate double knockout (IL10/

Nox1dKO) mice.

We showed that IL10/Nox1dKO mice spontaneously repro-

duced all the clinical and biological features of human UC and

exhibited similar ER stress alterations than those observed in UC

patients, including a dramatic loss in eIF2a phosphorylation and

goblet cells, highlighting the importance of this pathway in the

onset of colitis. Mechanistically, we demonstrated that IL10 and

Nox1 were two major negative regulators of the ER stress in goblet

cells and helped preserving the colonic mucus barrier. Further-

more, this experimental mouse model of UC provides a unique

opportunity to test, at a preclinical level, pharmacological

interventions which prevent eIF2a dephosphorylation, and devel-

op new drugs targeting the colonic epithelium in UC.

Methods

Recruitment of human participants
12 healthy controls and 12 patients with UC were recruited at

the IBD Gastroenterology Unit, Hôpital Beaujon (see Table S1).

The protocol was approved by the local Ethics Committee (CPP-

Ile de France IV No. 2009/17) and written informed consent was

obtained from all patients before enrollment. Non-inflamed

colonic areas were biopsied during colonoscopy procedure in all

patients with UC and in healthy controls. One biopsy was

analyzed histologically to assess the absence of colitis, five biopsies

were snap frozen and then stored in liquid nitrogen for molecular

analysis, and three biopsies were fixed in glutaraldehyde for

electron microscopy.

Mice
C57BL/6-WT and C57BL/6-IL10KO (Charles River Labora-

tories), and C57BL/6-Nox1KO mice (kindly provided by Pr. K.H.

Krause, Geneva Switzerland) were bred and housed under

Specific Pathogen Free (SPF) conditions. Nox1KO mice have been

described previously [20] and were crossed with IL10KO mice to

generate C57BL/6-IL10/Nox1dKO mice. A Mendelian ratio of

IL10/Nox1dKO offspring were born and developed normally. The

only gender difference observed was an earlier onset of colitis in

males. Therefore, we only used males in our experiments. All

mouse experiments were approved by the local Animal Ethics

Review Committee of the Faculty/Paris 7 University. Blood sera

from sentinel mice were tested for pathogens and a number of

viruses.

Clinical Assessment of colitis
The disease activity index (DAI) score was assessed from 3

weeks of age. Mice were assessed for changes in weight, stool

frequency and consistency, presence of blood in stools, length-to-

weight colon ratio, and prolapsed rectum.

Histological grading
Mouse colons were collected, flushed with cold PBS, cut into

small pieces (proximal, median, and distal segments) or open

longitudinally, fixed with 10% formalin (Sigma-Aldrich), and then

embedded in paraffin as ‘‘Swiss rolls’’ containing the full-length

organ. Small intestines were also fixed. Paraffin-embedded sections

(5 mm) were deparaffinized and stained with H&E and AB/PAS

reagents.

Histological grading of colitis was performed on the distal ileum

and the proximal, median and distal colon by scoring the

leukocyte infiltration (score range 0–3), neutrophil infiltration (0–

3), crypt abscesses (0–3), epithelial damages and ulcerations (0–3),

goblet cell depletion (0–2), aberrant crypt architecture (0–3), and

mucosal hyperplasia (0–2). Histological scoring was performed

blindly by a pathologist expert in intestinal inflammation (DCH).

Treatments
WT and Nox1KO mice were treated with 4% DSS (Mw 40 kDa,

MP Biomedicals) administered through the drinking water for 5

consecutive days or with a rectal enema of 0.85 mmol/kg TNBS

(Sigma) (60% H20/40% ethanol, v/v). TNBS-treated mice and

ethanol-treated control mice were sacrificed 24 h later. WT and

Nox1KO mice were treated intraperitoneally with 2 mg/g
tunicamycin (Sigma). Animals were sacrificed 24 h later. For the

assessment of the clinical score of DSS-, TNBS- and tunicamycin-

treated mice, prolapses were excluded from the DAI.

Three-4-week old IL10/Nox1dKO mice received intraperitone-

ally 1 mg/kg salubrinal (Calbiochem) 3 days/week for 3 weeks

and were then sacrificed.

The DAI and histological colitis scores were assessed as

described above.

ER Stress-Based Strategy for Ulcerative Colitis
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Immunohistochemistry and immunofluorescence
Immunohistochemistry was performed as described previously

[20] using antibodies directed against phospho-histone 3 (Upstate),

PCNA and GRP78/Bip (Abcam), cleaved caspase-3 (Cell Signal-

ing), Muc2, and ATF6a (Santa Cruz Biotechnology, Tebu-bio),

phospho-eIF2a (Cell Signaling), Foxp3 (eBiosciences), and Muc4

[25].

Immunofluorescence studies were performed using antibodies

directed against KDEL (Enzo Life Sciences), GRP78/Bip and

active caspase 3 (Cell Signaling), and Muc2 (Santacruz), and then

labeled with the appropriate secondary antibody (Life Technol-

ogies). Nuclei were stained using TO-PRO-3 iodide. Fluorescence

was detected by confocal laser scanning microscopy (CLSM-510-

META, Zeiss). All images were acquired using the Zeiss LSM

Image Browser software.

Chimeric mice
Bone marrow stem cells (BM) were isolated from WT, IL10KO

or IL10/Nox1dKO CD45.2/Ly5.2 mice. Five million BM were

injected intravenously into WT CD45.1/Ly5.1 lethally-irradiated

recipients (900 cGy of ionizing radiation) and the chimerism was

assessed at week 16 by flow cytometry using Ly5.1 and Ly5.2

markers. About 85–90% of immune cells were derived from the

grafted bone marrow: at least 85% of T-cells, 95% of B-cells and

85% of DC found in spleens were from the donor.

Preparation of cell suspensions from the spleen
Briefly, the spleen was removed from mice and washed with

cold PBS. Cell suspensions were prepared by extracting the cells

with a 5-ml polypropylene syringe piston. The cells were

centrifuged, erythrocytes were lysed by addition of Gey’s-solution,

and suspended in PBS.

Lymphocyte isolation
Colonic lamina propria mononuclear cells were isolated from

WT (n= 5) and IL10/Nox1dKO mice (n = 5) and aliquots of the

leukocyte fractions were prepared for flow cytometric analysis as

described by Schulthess et al. [26].

Flow cytometry analysis
Cell suspensions were incubated with PE-, FITC-, APC-, or

PerCP-conjugated mAbs against mouse CD3, CD4, CD8, CD11c,

CD19, CD44high, CD62luw, NK1, CD45Ly.1, and CD45Ly.2 (BD

Biosciences) at optimal concentrations for 20 minutes at 4uC.
Antibodies for the intracellular staining of Foxp3+ Treg cells were

from eBioscience. Labeled cells were analyzed using a BD-LSR II

device and CELLQuest software (BD Biosciences).

Cell culture and treatments
HT-29Cl16E cells (Ephyscience) were cultured in Dulbecco’s

modified Eagle’s medium (4.5 g/liter glucose) supplemented with

glutamax, 10% calf serum, 100 mg/ml streptomycin, and 100 U/

ml penicillin at 37uC in a 5%-CO2 environment as previously

described (38). Nox1 stealth RNAi siRNA or stealth RNAi siRNA

negative control Med GC (Life Technologies) was transfected into

cells using Lipofectamine TM RNAimax reagent (Life Technolo-

gies). Cells were maintained in the same medium for 48 hours.

Twenty-four hours before cell harvesting, human recombinant IL-

10 (rhIL-10, 50 ng/ml, R&D System) was added to the medium.

Cells were treated with TM (5 mg/ml), Tg (5 mM, Sigma-Aldrich)

or DMSO 6 hours before harvesting. Cell supernatants were

collected 48 hours after siRNA transfection. IL-8 expression was

measured by ELISA using the BD OptEIA kit (BD Biosciences)

according to the manufacturer’s instructions.

Proximity ligation assay
HT-29Cl16E cells (24,000 cells) were plated on 6 channel m-

Slide VI 0.4 (Ibidi) then fixed and the proximity ligation assay

(PLA) was carried out according to the manufacturer’s instructions

(Olink Biosciences). Briefly, fixed cells were permeabilized with

0.2%Triton X100 and incubated in blocking solution for 30 min

before adding the following primary antibodies overnight at 4uC:
mouse anti-PP1c and rabbit anti-GADD34 antibodies (1/100

dilution). After washing, the anti-rabbit MINUS and anti-mouse

PLUS PLA probes were added at 1/5 in blocking solution for 1 h

at room temperature. Ligation was carried out for 30 min at 37uC
and amplification was done according to the manufacturer’s

protocol. The concatemeric amplification products extending from

the oligonucleotide arm of the PLA probes were then detected

using a confocal scanning microscope.

PLA signals were quantified from at least 8 images. High-

resolution images from single scans were analyzed with the Imaris

7.7 software from BitPlane to calculate the density of PLA puncta

per cell. Images were first smoothed and a threshold was selected

to discriminate PLA puncta from background fluorescence. Once

selected, this threshold was applied uniformly to all images in the

sample set.

Detection of phospho-eIF2a using an alphascreen
SureFire assay
HT-29Cl16E cells (60,000 cells/well) carrying scrambled or

Nox1 siRNA were seeded into 96-well culture microplates in a

volume of 50 ml. After resting, the cells were treated with 50 ng/

ml IL10 for 24 hours, 5 mg/ml TM for 4 hours or with a

combination of IL10+TM and then lysed in Lysing buffer

according to the manufacturer’s protocol (Perkin Elmer). A

portion of lysate from each well (4 ml) was transferred to a 384-

well ProxiPlate, and assayed for phospho-eIF2a. A mixture of

Reaction buffer, Activation buffer, and AlphaScreen Acceptor

beads was prepared according to the manufacturer’s instructions,

and 5 ml of the assay mixture was added to the lysate in each well.

The plates were sealed and covered in foil, and incubated at 22uC
for 2 h. Then a mixture of 2 ml Dilution buffer and AlphaScreen

donor beads were added in the wells. The plates were sealed and

covered in foil, and incubated at 22uC for 2 h. The signal in the

wells was detected using an EnSpire Alpha plate reader (Perkin

Elmer).

Bacterial translocation
Mice were sacrificed and the spleen was aseptically removed.

Under sterile conditions, a sample fragment was cut tangentially

and sections placed on microscope slides. The remaining material

was crushed in a brain-heart infusion with 10% glycerol for

storage at 280uC. 50 ml of homogenate were also placed on the

slides. Both sections and homogenates were examined after Gram

staining. One hundred fields/slide were analyzed. The cultures

were performed by plating each sample (1/100 and 1/10000

dilutions) on blood supplied agar (BioMerieux, France) and were

incubated at 37uC for 48 h in aerobic and anaerobic atmospheres.

The number of CFU/g of tissue was quantified. Colonies obtained

underwent polymerase chain reaction (PCR) and sequencing of

their 16SrRNA gene for precise specy identification [27].

ER Stress-Based Strategy for Ulcerative Colitis
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Electron Microscopy
Normal colon biopsies from controls, patients with UC, and

unaffected colonic sections of 4-week old WT, Nox1KO, IL10KO,

and IL10/Nox1dKO mice were extemporaneously fixed in 1.7%

glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 7.2) for

24 h at 4uC, post-fixed in osmium tetroxide, dehydrated in ethanol

and embedded in Epon. For transmission electron micrographs

analysis, ultrathin sections stained with lead citrate were examined

on a Jeol 1010 electron microscope. For scanning electron

microscopy, colonic samples were dried after substitution with

liquid CO2 in a critical-point dryer (Polaron Equipment Ltd.,

Watford) and coated with gold (SEM coating unit E5100;

Polaron). Samples were viewed with a Philips 505 SEM

microscope.

Assessment of colonic hyperproliferation
The length of mouse proximal, median, and distal colonic crypts

was measured on longitudinal sections in each colonic area using a

micrometer.

Measurement of paracellular permeability
After sacrifice, biopsies of colonic mucosa were mounted in

Ussing chambers and maintained in circulating oxygenated

Ringer solution at 37uC throughout the experiment. Paracellular

permeability was assessed by measuring the mucosal-to-serosal flux

of 4 kDa FITC-dextran (Sigma, France) as previously described

[28].

Quantitative real-time PCR
Colon samples for qRT-PCR were extracted with RNAble

(Eurobio) and quantified using a ND-1000 NanoDrop spectro-

photometer (NanoDrop Technologies). Purity/integrity was as-

sessed with disposable RNA chips (Agilent RNA 6000 Nano

LabChip kit) using an Agilent 2100 Bioanalyzer (Agilent

Technologies). Reverse transcription was performed using M-

MLV (Invitrogen). Q-PCR was performed with SYBR Green

using a LightCycler 480 instrument (Roche Diagnostics). Values

were calculated using the DCt method and were normalized to the

housekeeping gene. Primer sequences can be provided upon

request.

Western Blot analyses
Colonic tissues were homogenized in a radioimmunoprecipita-

tion assay buffer (50 mM Tris-Cl [pH 8.0], 320 mM sucrose,

0.1 mM EDTA, 1 mM DTT, 1% Nonidet P-40, 0.1% SDS and

1% protease/phosphatase I and II inhibitor cocktail [Sigma]).

Proteins (50–100 mg) were separated on 10% SDS-PAGE gel,

transferred onto a membrane using iBlotGel Transfer device

(Invitrogen), and probed with primary antibodies: Phospho-eIF2a
(Ser51) (Cell Signalling), eIF2a, ATF4, and GADD34 (Santa Cruz

Biotechnology), KDEL (Abcam), and b-actin (Sigma). Horseradish

peroxidase-conjugated secondary antibodies were detected using

ECL reagents (Pierce).

Enzyme-linked immunosorbent assay
Cytokines were measured by ELISA using the manufacturer’s

guidelines (eBiosciences).

Statistical analyses
Because of difficulties to confirm a normal distribution due to

the sample size, statistically significant differences between the four

different types of mice over time were assessed using the non-

parametric Kruskal-Wallis test with Dunn’s multiple comparison

test, and data are presented using box plots. The non-parametric

Mann-Whitney U-test was used to analyze changes between two

groups. All statistical analyses were performed using Prism v5.0

(Graphpad software). The statistical test used and sample sizes for

individual analyses are indicated in the figure legends.

Results

IL10/Nox1dKO mice spontaneously develop colitis with
features similar to human UC
IL10/Nox1dKO mice were monitored and compared to age-

matched wild type (WT), IL-10KO, and Nox1KO mice. Mice were

submitted to systematic clinical analysis, comprehensive necropsy

with histopathological examination of the entire alimentary tract

at 3–4 weeks, 6–7 weeks, 10–12 weeks and 6–8 months of life.

IL10/Nox1dKO mice (n = 150) spontaneously developed clinical

signs of colitis from 6–7 weeks of age and disease activity index

(DAI) scores worsened with age (Fig. 1). Although some IL10KO

mice showed a slight weight loss at 13 weeks of age (Fig. 1B), none

of them developed enterocolitis during the period studied.

Classical signs of colitis including swollen, distended colon with

bleeding and enlarged mesenteric lymph nodes were present. The

histopathological analysis showed that in 3-week old IL10/

Nox1dKO mice, no histological signs of inflammation were present

in the entire colon (Fig. 2A). Inflammation started at 6–7 weeks of

age with typical proximal progression from the rectum to

involvement of most or all the colon at 12 weeks of age (Fig. 2A)

with no signs of ileitis (data not shown). Histologically, colitis

features were similar to those observed in human UC, i.e.

polymorphonuclear infiltrates, crypt abscesses, edema, focal

epithelial erosion, crypt loss, and frank ulcerations without

granulomas (Fig. 2B).

Consistently with the severity of colitis and epithelial damage, 7-

and 12-week old IL10/Nox1dKO mice had a barrier dysfunction

characterized by an increased colonic permeability measured with

FITC-dextran which worsened with age (Fig. 2C). Moreover,

these mice had splenomegaly which was correlated with an

increased commensal Gram-negative bacteria translocation which

increased with colitis progression (Fig. 2D). As expected, no

bacteria were found in the spleen of WT, Nox1KO, or IL10KO

mice (Fig. 2D).

Immunopathology in IL10/Nox1dKO mice
To study the immune response profile in our model, colon

samples of 12-week old mice were collected and various cytokines

were analyzed at both the mRNA and protein levels in all

genotypes (Fig. S1A–B). IL1-b, TNFa, IL13, IL6, IL17A, and
IFNb expression levels were significantly increased in the colon of

IL10/Nox1dKO mice compared to other genotypes, particularly in

the distal colon.

A significant increase in the percentage of CD4+ T cells

including CD4+ T cell effectors and FoxP3+ Treg cells and a

decrease in the percentage of CD8+ T cells were detected in the

lamina propria of IL10/Nox1dKO mice compared to WT (Fig. S2).

Furthermore, there was a trend toward an increase in CD11c+

dendritic cells in the colonic lamina propria of IL10/Nox1dKO

mice suggesting the contribution of both innate and adaptive

immunity in this model. A massive infiltration of CD3+

lymphocytes (Fig. S3A) including CD4+ CD25+ FoxP3+ Treg cells

(Fig. S3B) was observed in the inflamed colon and to a lesser extent

in the spleen only in IL10/Nox1dKO mice (Fig. S3C) as previously

reported in UC [29].

To determine whether the genotype of hematopoietic lineages

affected colitis, we generated bone marrow chimeric mice for

ER Stress-Based Strategy for Ulcerative Colitis
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which recipients and donors were WT (CD45.1) and WT,

IL10KO, and IL10/Nox1dKO mice (CD45.2), respectively. Mice

were studied 16 weeks after transplantation and a full chimeriza-

tion assessed through surface staining of bone marrow cells was

observed (Fig. S3D). The disease did not develop in irradiated WT

mice with IL10KO or IL10/Nox1dKO bone marrow showing that

the colitis could be mainly inherent to epithelial cells rather than

hematopoietic lineages in IL10/Nox1dKO mice (Fig. S3E).

However, it is noteworthy that the reconstitution of IL10/

Nox1dKO mice with bone marrow from WT donors could be

biased since histological signs of colitis were already present before

irradiation and bone marrow transplantation. Unfortunately, this

major bias, related to the early onset of colitis in IL10/Nox1dKO

mice, makes the reverse chimera uninformative.

IL10/Nox1dKO mice develop colitis-associated colonic
dysplasia and cancer
UC is associated with a higher risk of occurrence of dysplasia

and colorectal cancer [30]. We investigated whether IL10/

Nox1dKO mice had longstanding colonic disease complications

by analyzing the late colonic evolution in 8-month old IL10/

Nox1dKO mice (n = 35). 10 mice developed dysplasia (30%), 14

mice developed colonic cancer (40%), and 5 had multifocal

dysplasia and cancer (15%) (Fig. S4).

IL10/Nox1dKO mice exhibit early goblet cell alteration
before severe colitis and signs of regenerative and
apoptotic responses
Mucins were rare in the colonic epithelium of 6–7-week old

IL10/Nox1dKO mice associated with a loss of goblet cells in

ulcerated sites (Fig. 3A). Accordingly, Muc2 and Muc4 protein

levels were reduced in inflamed colonic areas of IL10/Nox1dKO

mice (Fig. 3B). Reduced mature goblet cell number and size and

decreased Muc2 expression were detected early in the distal colon

of 3–4-week old IL10/Nox1dKO mice when no inflammation was

detected, suggesting that the defect in goblet cells could precede

histologically detectable inflammation (Fig. 3C). Aberrant goblet

cells with a few immature thecae associated with reduced mucus

were observed in the colon of IL10/Nox1dKO mice and UC

patients (Fig. 4A–B).

The number of PCNA- and phospho-histone 3-positive cells was

increased in the colonic sections of IL10/Nox1dKO mice

suggesting an increased epithelial proliferation (Fig. S5). A

,30% increase in crypt length was found in IL10/Nox1dKO

mice using scanning electron microscopy (SEM) (Fig. 4C and Fig.

S6A). Interestingly, numerous identical ultrastructural alterations

were found in the colonic mucosa of IL10/Nox1dKO mice and UC

patients on SEM (Fig. 4D–E). Despite the increased colonic

proliferation, the staining and quantitative assessment of active

caspase 3-positive apoptotic cells in the villous epithelium of IL10/

Nox1dKO mice suggested that the decreased number of goblet cells

was mainly due to an increased apoptosis in the colon (Fig. S6B–

E).

Figure 1. Spontaneous colitis in IL10/Nox1dKO mice. (A) The DAI is measured daily in WT (n = 10), Nox1KO (n = 10), IL10KO (n = 10), and IL10/
Nox1dKO (n = 25) mice. Statistics: p-values for Kruskal-Wallis non-parametric analysis are shown, Dunn’s multiple comparison test versus WT; *p,0.05,
**p,0.01, ***p,0.001. (B) Clinical symptoms of IL10/Nox1dKO mice. Body weight changes, rectal bleeding and stool scores were assessed daily. The
weight-to-length ratio was determined for each individual colon of WT (n = 10), Nox1KO (n = 10), IL10KO (n = 10), and IL10/Nox1dKO (n = 25) mice aged
7 and 12 weeks. Statistics: box plots show median, quartiles, and range; p-values for Kruskal-Wallis non-parametric analysis are shown, Dunn’s
multiple comparison test vs. WT, NS, not significant. (C) Percentage of WT (n = 10), Nox1KO (n = 10), IL10KO (n = 20), and IL10/Nox1dKO (n = 30) mice
with prolapse at 7 and 12 weeks of age. Statistics are as in (B).
doi:10.1371/journal.pone.0101669.g001
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IL10/Nox1dKO mice exhibit impaired ER stress response in
epithelial cells
To assess the role of goblet cells in ER stress-induced colitis, WT

and goblet cell-overexpressing Nox1KO mice received orally

dextran-sodium-sulfate (DSS) (Fig. S7) or rectally 2,4,6-trinitro-

benzene sulfonic acid (TNBS) (Fig. S8). There was no significant

difference in DAI scores or in the histological damage of the

colonic mucosa between the two mouse models. This demonstrates

that chemically-induced inflammation is probably independent of

the increase in goblet cells. It should be noted that no difference in

clinical and histological scores was observed between WT and

Nox1KO mice fed with different doses of DSS varying from 2% to

5% (data not shown). On the other hand, the acute ER stress

induced by tunicamycin (TM) treatment, a canonical ER stress

inducer, induced colitis which resulted in a decreased goblet cell

number, inflammatory infiltrate, and erosion of the colonic

epithelium in both WT and Nox1KO mice, and was exacerbated

in Nox1KO mice (Fig. S9). These data suggest that goblet cells

could directly participate to the development of ER stress-induced

colitis.

As previously described in the unaffected mucosa of UC patients

[5], 3–4-week old IL10/Nox1dKO mice exhibited chronic ER

stress alterations in the colonic mucosa prior to severe colitis. IRE1

and ATF6a UPR branches were activated in colonic epithelial

cells as shown by the increased XBP-1 mRNA splicing, the

induction of major ER chaperones such as GRP78/Bip, GRP94,

and PDI at both the mRNA and protein levels, and the dilated

cisternae and gross distortion of the ER in goblet cells (Fig. 5A–B,

and Fig. S10A). Epithelial cells with increased signal intensity for

ATF6a and GRP78/Bip were found in the upper villus regions of

the colon of IL10/Nox1dKO mice (Fig. S10B). The expression of

KDEL-containing proteins (motif of permanent ER retention

common to ER stress-induced chaperones) was strongly increased

in the colonic epithelium of IL10/Nox1dKO mice compared with

WT mice (Fig. 5C). Additionally, ER resident KDEL-containing

chaperones were co-expressed in Muc2-positive cells suggesting

the presence of unabated ER stress in goblet cells of IL10/

Nox1dKO mice (Fig. 5C).

We next investigated the efficiency of the integrated stress

response mediated by the PERK/eIF2a/ATF4 pathway in the

colonic mucosa of IL10/Nox1dKO mice. Note that the defective

eIF2a phosphorylation correlating with low ATF4 mRNA and

protein expression was observed in the colonic mucosa of both

IL10/Nox1dKO mice (Fig. 5D and Fig. S10A) and patients with

Figure 2. Clinical and histological features of IL10/Nox1dKO mice. (A) Upper panel- Representative histological H&E staining of sections of the
proximal, median, and distal colons of IL10/Nox1dKO mice aged 3, 7, and 12 weeks. Lower panel- Histological colitis scores were determined at 7 and
12 weeks of age from proximal, median, and distal colon sections (n = 15/genotype). Statistics: box plots show median, quartiles, and range; p-values
for Kruskal-Wallis non-parametric analysis are shown, Dunn’s multiple comparison test vs. WT, NS, not significant. (B) Representative histology of
normal distal colon of 12-week old WT, Nox1KO, IL10KO mice and examples of inflammation in the distal colon of 12-week old IL10/Nox1dKO mice. (C)
Permeability of FITC-dextran in three different segments of the distal colon of WT, Nox1KO, IL10KO, and IL10/Nox1dKO mice (n = 5/group) aged 7 and
12 weeks incubated in Ussing chambers. Statistics are as in (A). (D) Left panel - Representative image of the spleen of 12-week old IL10/Nox1dKO mice
vs. WT and single KO mice (scale in cm). Right panel - Quantification of viable bacteria translocated to the spleen of WT, Nox1KO, IL10KO, and IL10/
Nox1dKO mice (n = 5/group) aged 7 and 12 weeks. Results are presented as log10 CFU/g of tissue. Inserts show the presence of bacteria in the spleen.
Identification of bacteria by 16SrRNA revealed mainly the presence of endogenous gut bacteria. Statistics are as in (A).
doi:10.1371/journal.pone.0101669.g002
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inactive UC [5]. As we have previously shown in humans [5], the

increased expression of PPP1R15A/GADD34, a stress-inducible

protein which recruits the catalytic subunit of the protein

phosphatase 1 (PP1c) to promote eIF2a dephosphorylation, was

associated with a reduced eIF2a phosphorylation (Fig. 5D).

Nox1 and IL10 differentially regulate the ER stress in
colonic goblet cells
To further investigate the mechanism by which IL10 and Nox1

regulated the ER stress and triggered inflammation in goblet cells,

an in vitro model of intestinal mucus-secreting cells, the human

HT-29Cl16E cells, was used [31]. The ability of Nox1 and IL10 to

elicit or repress eIF2a phosphorylation by modulating the

formation of PP1c/GADD34 complexes under stress conditions

was first assessed. To this end, HT-29Cl16E cells carrying

scrambled or Nox1 siRNAs were treated with TM in the presence

or absence of IL10. Nox1 mRNA level was reduced by .75–80%

in cells transfected with Nox1 siRNA compared to control cells

(Fig. 6A). TM significantly reduced Nox1 mRNA level in the two

cell populations (Fig. 6A). EIF2a phosphorylation and the

formation of PP1c/GADD34 complexes were next analyzed using

the Alphascreen SureFire P-Ser51-eIF2a assay and Duolink

proximity ligation assay, respectively. As expected, TM induced

eIF2a phosphorylation which was balanced by an increased

number of PP1c/GADD34 complexes in controls cells carrying

scrambled siRNA (Fig. 6B–C). No significant changes were

observed in eIF2a phosphorylation and the formation of PP1c/

GADD34 complexes in control cells treated with IL10 alone or in

combination with TM (Fig. 6A–B) excluding a potential regulatory

role of IL10 on the integrated stress response. In contrast, TM-

induced eIF2a phosphorylation was significantly reduced in cells

carrying Nox1 siRNAs associated with a .5-fold increase in the

number of PP1c/GADD34 complexes regardless of the presence

of IL10 (Fig. 6B–C). Similar imbalance was observed with

Thapsigagin (Tg), another ER stressor which inhibits the calcium

pump SERCA (data not shown). It is noteworthy that Nox1

silencing slightly increased the number of PP1c/GADD34

complexes in the absence of TM compared to control cells

(Fig. 6C). These data provide evidence that Nox1 silencing could

induce eIF2a dephosphorylation in stressed goblet cells by

enhancing PP1c/GADD34 interactions. Interestingly, the reduced

eIF2a phosphorylation was also observed in the distal colonic

mucosa of TM-treated Nox1KO mice (Fig. S10 C) suggesting that

changes in Nox1 expression impaired the TM-induced integrated

stress response associated with an increased susceptibility to

inflammation (see Fig. S9). Although IL10 did not exert any

regulatory effect on the integrated stress response in our

experimental conditions, it reduced IRE1-dependent XBP1

splicing induced by Tg (Fig. 6D) in accordance with the

suppressive effect of IL10 on the ER stress via the IL10R/

Stat1–3 signaling pathway previously proposed by Hasnain et al.

[2]. Consistently with the absence of suppressive effect of IL10 on

eIF2a phosphorylation, no change in Tg-induced GADD34

Figure 3. Altered goblet cells and mucin expression in IL10/Nox1dKO mice. (A) Representative sections of the distal colon of 7-week old WT
(n = 10), Nox1KO (n = 10), IL10KO (n = 10), and IL10/Nox1dKO (n = 20) mice stained with AB/PAS. The distal colon of 7-week old WT (n = 5), Nox1KO (n = 5),
IL10KO (n = 5), and IL10/Nox1dKO (n = 5) mice is shown both in transverse and longitudinal semi-thin sections. (B) Immunohistological analysis of Muc2
and Muc4 in distal colonic sections of 7-weeks old WT (n = 5), Nox1KO (n = 5), IL10KO (n = 5), and IL10/Nox1dKO (n = 5) mice. (C) Representative sections
of the distal colon of 3-week old WT (n = 5) and IL10/Nox1dKO (n = 5) mice stained with AB/PAS (upper panels) or with anti-Muc2 antibody (lower
panels).
doi:10.1371/journal.pone.0101669.g003
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mRNA expression was observed upon IL10 treatment (Fig. 6D).

Of note, IL10 did not modify Tg- or TM-induced ATF4 and

CHOP mRNA levels (data not shown). In contrast, Nox1 silencing

strongly increased the ER stress-induced GADD34mRNA and to a

lesser extent XBP1 splicing, suggesting a crucial role of Nox1 in the

regulation of the integrated stress response and more broadly of

the UPR (Fig. 6D). Furthermore, Nox1 deficiency induced an

increased secretion of the pro-inflammatory chemokine IL8 by

goblet cells in the presence of Tg (Fig. 6E). IL10 slightly but

significantly reduced the Tg-induced secretion of IL8 by cells

carrying Nox1 siRNA (Fig. 6E) suggesting that the deregulated ER

stress in goblet cells could initiate the inflammation in the colonic

mucosa.

Altogether, these data demonstrated the multifaceted role of

IL10 and Nox1 in the regulation of the ER stress in goblet cells,

improving the course of UPR, suppressing proinflammatory

signaling originating from goblet cells, and facilitating the mucosal

barrier function.

Salubrinal treatment prevents colitis in IL10/Nox1dKO

mice
Our findings highlighted that the eIF2a phosphorylation was

altered in both UC patients [5] and IL10/Nox1dKO mice (this

study) prior to colitis associated with an increased formation of the

GADD34 and PP1c/GADD34 complex. To test whether a

selective pharmacological inhibitor of PP1c/GADD34-mediated

eIF2a dephosphorylation could prevent colitis, IL10/Nox1dKO

mice were treated with salubrinal [32] for three weeks. Salubrinal

strongly reduced the histological colitis score throughout the colon,

markedly prevented immune cell infiltration, and restored the

intact mucosal architecture with normal goblet cells (Fig. 7A–C).

Salubrinal sustained eIF2a phosphorylation and reduced GRP78/

Bip and GRP94 expression in IL10/Nox1dKO mice (Fig. 7D).

Interestingly, we demonstrated that salubrinal-induced eIF2a
phosphorylation was mainly detected in colonic epithelial cells

(Fig. 7E). Finally, pro-inflammatory cytokines and percentage of

colonic and splenic Treg cells were decreased in salubrinal-treated

IL10/Nox1dKO mice (Fig. S11) highlighting a restoration of the

colonic mucosal homeostasis.

Altered IL10 and NOX1 expression in the non-inflamed
colonic mucosa of UC patients
As NOX1 is mainly expressed in colonic epithelial cells in

humans [24,33,34,35] we hypothesized that abnormal IL10 and

NOX1 levels could be observed in UC patients. We thus assessed

IL10 and NOX1 levels in the non-inflamed colonic mucosa of UC

patients (n = 12) and healthy controls (n = 12) (Fig. 8). UC tissue

biopsy specimens from non-inflamed regions were sampled during

endoscopy. Unaffected areas were defined as mucosal regions

containing about 85–90% of epithelial cells without any macro-

scopic, endoscopic, and histological signs of inflammation. Basal

expressions of both IL-10 (P,0.001, protein level) and NOX1

(p = 0.02, mRNA level) were significantly decreased in the non-

inflamed colonic mucosa of UC patients compared to healthy

subjects. These findings highlighted the clinical relevance of the

IL10/Nox1dKO mouse model for UC.

Figure 4. Similar ultrastructural abnormalities in the colonic epithelium of IL10/Nox1dKO mice and patients with UC. (A)
Representative transmission electron micrographs of the unaffected colon of 4-week old WT (n = 5), Nox1KO (n = 5), IL10KO (n = 10), and IL10/Nox1dKO

(n = 10) mice. (B) Representative transmission electron micrographs of the unaffected colon of 10 healthy subjects and 10 patients with UC. Note that
IL10/Nox1dKO mice display morphological goblet cell abnormalities similar to those found in patients with UC including reduced size of thecae
containing stored mucins, immature mucus granules, and swollen mitochondria. (C) Representative scanning electron micrographs (SEM) of distal
colonic crypts of 6-week old WT (n = 5), Nox1KO (n = 5), IL10KO (n = 10), and IL10/Nox1dKO (n = 10) mice. Note that the Lieberkhün’s crypts are longer in
IL10/Nox1dKO mice. (D) Representative scanning electron micrographs of the distal colonic epithelium of 6-week old WT (n = 5), Nox1KO (n = 5), IL10KO

(n = 8), and IL10/Nox1dKO (n = 10) mice. Note the inappropriate pattern of crypt openings (arrowheads) on SEM with enlarged extrusive zones and
dilated gland lumen in the distal colon of IL10/Nox1dKO mice. (E) Representative SEM of the unaffected colonic mucosa of 10 healthy subjects and 10
patients with UC. Note the regular pattern of crypt openings with diffuse edema, enlarged extrusive zones, and dilated gland lumen similar to those
found in IL10/Nox1dKO mice. Abbreviations: GC: goblet cell, C: colonocyte, T: thecae, LM: lamina propria, M: mitochondria.
doi:10.1371/journal.pone.0101669.g004
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Discussion

In this study, we showed that both immunological and epithelial

deficiencies in mice lacking the anti-inflammatory cytokine IL10

and Nox1 sensitized the colon to spontaneously develop severe

colitis and mimicked all clinical and histological characteristics of

UC. Consistently, we showed that both IL10 and NOX1

expression levels were decreased in the non-inflamed colonic

mucosa of UC patients compared to healthy controls. We can

assume that IL10 and Nox1 could play a central role in UC

pathogenesis and cooperate to modulate the UPR and inflamma-

tion, particularly in goblet cells. We identified an early defect of

eIF2a phosphorylation associated with an increased GADD34

expression in the non-inflamed colon of IL10/Nox1dKO mice as

previously reported in UC patients [5]. We found that Nox1

invalidation in goblet cells increased both GADD34 transcription

and the number of PP1c/GADD34 complexes responsible for

eIF2a dephosphorylation under stress conditions. These data

highlight for the first time that Nox1 is directly involved in the

negative regulation of the integrated stress response. Consistently,

Nox1KO mice which exhibited a high number of goblet cells in the

colon [20] developed severe colitis after acute treatment with TM

and failed to induce eIF2a phosphorylation. Although we can

assume that the products of Nox1, ROS, could be responsible for

the preservation of eIF2 phosphorylation under prolonged ER

stress through a negative control of the formation of PP1c/

GADD34 complexes, the precise mechanism by which Nox1

inhibits the integrated stress response and controls inflammation

remains to be clarified.

Interestingly, Nox1 invalidation in HT29Cl16E cells elicited

Tg-induced IL8 release which was partially limited when cells

were treated with IL10, suggesting that both IL10 and Nox1 are

involved in the regulation of the ER stress-dependent inflamma-

tory signaling in the epithelial barrier. A previous report supported

that bacterial peptides, such as N-formyl peptide (fMLP), could

interact with goblet cells and induce the release of chemokines

including IL8, leading to neutrophil recruitment and mucus

depletion [36]. In parallel, Nox1 seems to play a crucial role

Figure 5. Evidence of altered UPR in IL10/Nox1dKO mice. (A) Representative immunoblot analysis of chaperone expression in the distal colon
of 3–4-week old WT, Nox1KO, IL10KO, and IL10/Nox1dKO mice (n = 9/group) using an anti-KDEL antibody. b-actin was used as loading control and
densitometric analyses are shown. P-values for Kruskal-Wallis non-parametric analysis are shown, Dunn’s multiple comparison test versus WT, NS; not
significant. (B) Ultrastructural evidence of ER stress in the colonic epithelium of 4-week old IL10/Nox1dKO mice (n = 10). Representative transmission
electron micrographs of goblet cells showing dilation of the endoplasmic reticulum (asterisks). Abbreviations: GC, goblet cell, ER, endoplasmic
reticulum, T, thecae, M, mitochondria, V, vacuoles. (C) Confocal microscopy of colonic sections of WT and IL10/Nox1dKO mice stained with antibody
against KDEL sequence (red) (upper panel). Original magnification (x40). The panel on the right-hand side represents a higher magnification (x60).
Goblet cell thecae are identified by white asterisks. Nuclei (blue) are stained with TO-PRO-3 iodide. Lower panels: double indirect
immunofluorescence of colonic sections of WT and IL10/Nox1dKO mice stained with antibodies against Muc2 (green) and KDEL sequence (red).
Original magnification (x40). Photomicrographs are representative sections of five mice for each genotype. Inset boxes are enlarged views showing
co-expression of both markers in goblet cells (white arrows). Original magnification (x60). (D) Representative immunoblot analysis of indicated
protein expression in the distal colon of 3–4-week old WT, Nox1KO, IL10KO, and IL10/Nox1dKO mice (n = 9/group). b-actin served as a loading control.
The P-eIF2b/eIF2b ratio was measured and densitometric analyses are shown. Statistics are as in (A).
doi:10.1371/journal.pone.0101669.g005
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downstream of the fMLP receptor in intestinal epithelial cells by

promoting the mucosal wound repair through ROS production

[22,37]. These findings support the hypothesis that early events in

mucosal inflammation take place when both Nox1 and IL10

suppressive effects on the ER stress are deficient in goblet cells.

Furthermore, IL10 is known to modulate the ER stress response

in intestinal epithelial cells. Characterizing the proteome of

intestinal epithelial cells from Enterococcus faecalis-monoassociated

IL10KO mice revealed an inadequate response to oxidative and

ER stresses associated with increased GRP78/Bip expression

levels [9,38]. Hasnain et al. [2] have demonstrated that IL10

deficiency combined with the Winnie missense misfolding mutation

in Muc2 [3] exacerbated the ER stress in goblet cells and resulted

in severe colitis. The authors reported that IL10 directly

suppressed TM-induced XBP1 splicing and maintained mucin

production under stress condition through the up-regulation of

genes involved in the mucin folding (Agr2) and ER-associated

degradation process (ERAD) in goblet cells. Interestingly, our data

showed that IL10 alleviated the ER stress through the inhibition of

the IRE1/XBP1 pathway without affecting the eIF2 phosphory-

lation. IL10 had no significant effect on the TM-induced

formation of PP1c/GADD34 complexes, suggesting that Nox1

and IL10 alleviate the ER stress by acting on distinct UPR

branches. We can assume that IL10 and Nox1 synergize to

regulate the ER stress in goblet cell functions and inflammatory

process.

A growing body of evidence suggests that ER stress abnormal-

ities in secretory cells could contribute to UC pathogenesis and

therefore modulating the ER stress has therapeutic potential. In

proof-of-concept experiments, we showed that salubrinal, which

inhibits the PP1c/GADD34 activity, restored the eIF2a phos-

phorylation and prevented colitis in IL10/Nox1dKO mice. These

data suggest that future selective small molecules targeting eIF2a
dephosphorylation could be novel strategies for UC.

Figure 6. Nox1 and IL10 negatively regulate the UPR in cultured intestinal goblet cells. (A) HT-29Cl16E cells carrying siRNA scrambled or
Nox1 siRNA were treated in triplicate with vehicle (Ctrl), IL10 (50 ng/ml), TM (5 mg/ml), or IL10+TM. NOX1 mRNA levels were determined by qPCR and
normalized to b-actin with the mean ratio of the control group corrected to 1. Statistics: p-values for Kruskal-Wallis non-parametric analysis are
shown, Dunn’s multiple comparison test versus Ctrl, **p,0.01, ***p,0.001. (B) eIF2a phosphorylation was measured using an Alphascreen SureFire P-
Ser51-eIF2a assay in three independent experiments (mean +/2 SD). (C) Upper panel – HT-29Cl16E cells carrying siRNA scrambled or Nox1 siRNA
were treated with vehicle (Ctrl), IL10 (50 ng/ml), TM (5 mg/ml), or IL10+TM. Proximity between PP1c and GADD34 was detected by PLA. Nuclei were
stained with TO-PRO-3 iodide. Confocal photomicrographs are representative of four independent experiments (original magnification x40). Lower
panel – Quantification of PLA signals for PP1c and GADD34 proximity (n = 8 per condition). Fluorescent signals were counted using Imaris software
and the average number of spots per cell is represented (mean 6 SD). (D) Upper panel - HT-29Cl16E cells were treated in triplicate with vehicle (Ctrl),
thapsigargin (Tg, 5 mM), IL10 (50 ng/ml), or IL10+Tg. Lower panel - HT-29Cl16E cells carrying scrambled (si) or Nox1 siRNA (si NOX1) were treated in
triplicate with vehicle (Ctrl) or Tg (5 mM). XBP1s and GADD34 mRNA levels were determined by qPCR and normalized to b-actin Statistics: p-values for
Kruskal-Wallis non-parametric analysis are shown, Dunn’s multiple comparison test versus Ctrl, *p,0.05, ***p,0.001. (E) Concentration of IL8 in
supernatants from HT-29Cl16E cells carrying scrambled (si) or Nox1 siRNA (si NOX1) treated in triplicate with vehicle (Ctrl),), thapsigargin (Tg, 5 mM),
IL10 (50 ng/ml), or IL10+Tg (mean S.D).
doi:10.1371/journal.pone.0101669.g006
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The morphological, phenotypical, and functional alterations

observed highlighted the relevance of our murine model for

studying multiple aspects of UC including its associated compli-

cations such as colitis-associated cancer. It is noteworthy that the

C57/Bl6 genetic background is known to be resistant to neoplasia,

and that only a few IL10 mice develop cancer as previously

reported by Kanneganti et al. [39]. The IL10/Nox1dKO model

will help testing the preventive and curative effect, the long-term

efficacy in maintaining remission, and probably the long-term

properties in preventing cancer of current and future molecules.

This is priceless because so far long-term comparative clinical

studies testing colorectal cancer chemoprevention in UC patients

are not feasible.

Supporting Information

Figure S1 Cytokine expression and leukocyte composi-
tion in IL10/Nox1dKO mice. (A) Quantitative reverse tran-

scriptase-PCR array was performed on the distal colonic sections

of 7-week old WT (n= 5), Nox1KO (n= 5), IL10KO (n = 5), and

IL10/Nox1dKO (n= 5) mice. Cytokine mRNA levels were

normalized to GAPDH and expressed as relative fold change to

the mean expression in WT mice. P-values for Kruskal-Wallis non-

parametric analysis are shown; Dunn’s multiple comparison test

vs. WT, NS, not significant. (B) Concentrations of different

cytokines in supernatants from colonic lysates of 12-week old WT

(n= 7), Nox1KO (n= 8), IL10KO (n= 8), and IL10/Nox1dKO

(n= 10) mice. Statistics: box plots show median, quartiles, and

Figure 7. Salubrinal rebalances the altered ER stress and prevents colitis. Three-4-week old IL10/Nox1dKO mice received 1 mg/kg salubrinal
(Sal) intraperitonally or vehicle (Vh) 3 times per week for 3 weeks. (A) Histological colitis scores were determined at 6–7 weeks of age from H&E-
stained colonic sections. Statistics: box plots show median, quartiles, and range; Mann-Whitney U-test, p-values are shown. (B) Representative H&E-
stained sections of the distal colon of Vh- (n = 10) or Sal (n = 15)-treated IL10/Nox1dKO mice. (C) Left panels - Goblet cell staining with blue alcian/
periodic acid Schiff stain on distal colonic sections of Vh- or Sal-treated IL10/Nox1dKO mice (n = 15/group). Right panels - Representative transmission
electron micrographs of the distal colon of Vh- (n = 6) or Sal- (n = 8) treated IL10/Nox1dKO mice. (D). Representative immunoblot analysis of indicated
protein expression in the distal colon of Vh- (n = 10) or Sal- (n = 15) treated IL10/Nox1dKO mice aged 6–7 weeks. b-actin is used as loading control. The
P-eIF2a/eIF2a ratio was measured and densitometric analyses are shown. P-values for Mann-Whitney U-test analysis are shown. (E) Representative
immunohistological analysis of P-eIF2ab (Ser51) in WT (n = 8), Vh- (n = 10) or Sal- (n = 15) treated IL10/Nox1dKO mice aged 6–7 weeks. Note that the P-
eIF2a epithelial staining in salubrinal-treated IL10/Nox1dKO mice is similar to that of WT mice.
doi:10.1371/journal.pone.0101669.g007

Figure 8. The IL10 protein and NOX1 mRNA are detected in the
non-inflamed colonic mucosa of controls (Ctrl, n =12) and UC
patients (n =12) by ELISA and qPCR, respectively. Statistics:
Mann-Whitney U-test (p-values shown).
doi:10.1371/journal.pone.0101669.g008
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range; p-values for Kruskal-Wallis non-parametric analysis are

shown, Dunn’s multiple comparison test vs. WT, NS, not

significant.

(TIF)

Figure S2 Altered lamina propria leukocyte composi-
tion in IL10/Nox1dKO mice. Lamina propria mononuclear

cells from the colon of WT (n= 5) and IL10/Nox1dKO (n= 5) mice

were stained for indicated markers and analyzed by flow

cytometry, and expressed as a proportion of cells from the total

live gate. Statistics: p-values for Mann-Whitney U-test are shown,

NS; not significant.

(TIF)

Figure S3 (A) Representative immunohistological anal-
ysis of CD3+ cells from distal colonic sections of 7-week
old WT, Nox1KO, IL10KO, and IL10/Nox1dKO mice
(n=5/group). (B) Representative immunohistological analysis

of Foxp3+ cells from distal colonic sections of 7-week old WT,

Nox1KO, IL10KO, and IL10/Nox1dKO mice (n = 5/group). (C)

Treg (CD4+ CD25+ Foxp3+) cell count in 7-week old IL10/

Nox1dKO mice expressed as a total lymphocyte percentage in the

spleen. Statistics: box plots show median, quartiles, and range; p-

values for Kruskal-Wallis non-parametric analysis are shown,

Dunn’s multiple comparison test vs. WT, NS, not significant. (D)

Bone marrow stem cells were isolated from WT, IL10KO or IL10/

Nox1dKO CD45.2/Ly5.2 mice (4–6-week old) and injected

intravenously into WT CD45.1/Ly5.1 lethally-irradiated recipi-

ents. Mice were studied 16 weeks after transplantation and the

chimerism was assessed by flow cytometry using the Ly5.1 and

Ly5.2 markers. Mononuclear cells were stained for CD45, CD3,

CD19 or CD11c then analyzed by flow cytometry (individual

points are shown). (E) Representative H&E- (left panels) and AB/

PAS (right panels)-stained distal colonic sections of recipient WT

mice reconstituted with WT, IL10KO or IL10/Nox1dKO bone

marrow show normal colonic morphology and goblet cells.

(TIF)

Figure S4 Natural history of spontaneous colitis-asso-
ciated cancer in 8-month old IL10/Nox1dKO mice. (A)
Histopathological whole-mount view of Swiss-roll showing dys-

plasia and multifocal cancer lesions developed in the colon (B)
Histopathological image of dysplasia-associated lesion or mass

(DALM). (C) Ulceration and basal plasmocytosis. (D) Crypt

abscesses and plasmocytosis. (E) Low-grade dysplasia. (F) High-

grade dysplasia. (G) Invasive adenocarcinoma occurring in the

submucosa.

(TIF)

Figure S5 Colonic crypt proliferation is increased in
IL10/Nox1dKO mice. Immunohistochemical analysis of the

distal colonic sections of 7-week old WT (n= 5), Nox1KO (n = 5),

IL10KO (n= 5), and IL10/Nox1dKO (n= 5) mice stained with

antibodies against the proliferating antigens (A) PCNA and (B)
phospho-histone-3 (PH-3). The number of PCNA+ and PH3+
nuclei was counted in 10 and 50 consecutive crypts from proximal,

median, and distal colon, respectively. Statistics: box plots show

median, quartiles, and range; p-values for Kruskal-Wallis non-

parametric analysis are shown, Dunn’s multiple comparison test

vs. WT, *p,0.05, NS, not significant.

(TIF)

Figure S6 Increased proliferation and apoptosis in the
colonic crypts of IL10/Nox1dKO mice. (A) Length of

proximal, median, and distal colonic crypts in 6–7-week old WT

(n=10), Nox1KO (n= 10), IL10KO (n= 15), and IL10/Nox1dKO

(n = 15) mice. Statistics: box plots show median, quartiles, and

range; p-values for Kruskal-Wallis non-parametric analysis are

shown, Dunn’s multiple comparison test vs. WT, NS, not

significant. (B) The number of active caspase 3 positive cells was

counted in 10 consecutive crypts from proximal, median, and

distal colon of 7-week old WT (n= 10), Nox1KO (n= 10), IL10KO

(n= 15), and IL10/Nox1dKO (n = 15) mice. Statistics: box plots

show median, quartiles, and range; p-values for Kruskal-Wallis

non-parametric analysis are shown, Dunn’s multiple comparison

test vs. WT, NS, not significant. (C) Transmission electron

micrographs of the distal colon of 7-week old IL10/Nox1dKO

mice (n = 5) reveal reduced size of goblet cell (GC) thecae (T),

pycnotic GC nuclei with irregular edge (white arrows), altered

mitochondria (M) and cytoplasm vacuolization, apoptotic frag-

ments and vacuole containing condensed GC debris (black

arrows). (D) Confocal microscopy of colonic sections of WT and

IL10/Nox1dKO mice stained with antibody against active caspase

3 (red). Original magnification (x40). (E) Representative immuno-

histological analysis of active caspase 3 in distal colonic sections of

6-week old WT (n= 5), Nox1KO (n= 5), IL10KO (n= 10), and

IL10/Nox1dKO (n= 10) mice. Magnification of the micrographs

shows increased immunostaining of active caspase 3 in IL10/

Nox1dKO mouse GC.

(TIF)

Figure S7 Susceptibility of WT and Nox1KO mice to
dextran sodium sulfate (DSS)-induced colitis. WT (n= 37)

and Nox1KO (n = 30) mice were treated with 4% DSS in the

drinking water or water alone (Ctrl) for the indicated time. (A)
Representative AB/PAS-stained sections of the distal colon

exhibited identical susceptibility to DSS despite the higher number

of goblet cells in Nox1KO mice than in WT. (B) Mouse body

weight changes during DSS treatment are expressed as means 6

sem. (C) Clinical disease activity index (DAI) score during 4% DSS

administration was assessed, including weight loss, stool consis-

tency, occult blood positivity, and gross rectal bleeding. (D)

Cumulative histopathology score included the mucosal thickening,

presence of inflammatory cells, general destruction of the

architecture, loss of goblet cells. Statistics: Kruskal-Wallis non-

parametric analysis, Dunn’s multiple comparison test, NS, not

significant.

(TIF)

Figure S8 Susceptibility of 2,4,6-trinitrobenzenesulfo-
nic acid (TNBS)-treated WT and Nox1KO mice to severe
colonic inflammation. WT (n= 15) and Nox1KO (n= 15) mice

received an enema containing TNBS for 1 day. Controls (Ctrl)

received ethanol enemas alone. (A) Representative AB/PAS-

stained sections of the distal colon: the susceptibility to TNBS was

similar in both mouse genotypes. (B) Mouse body weight changes

during TNBS treatment are expressed as means 6 sem. (C)

Clinical disease activity index (DAI) score was assessed as in Fig.

S8. (D) Cumulative histopathology score included the presence of

inflammatory cells, general destruction of the architecture, ulcers.

Statistics: Kruskal-Wallis non-parametric analysis, Dunn’s multi-

ple comparison test, NS, not significant.

(TIF)

Figure S9 Susceptibility of WT and Nox1KO mice to
tunicamycin (TM) treatment.WT (n= 5) and Nox1KO (n= 5)

mice received intraperitoneally 2 mg/g TM or its vehicle (Ctrl) and

were sacrificed 24 h later. (A) Representative AB/PAS-stained

sections of the distal colon: a more severe inflammation is observed

in Nox1KO mice than in WT mice. Note that the extensive focal

crypt epithelial destruction, immune cell infiltrate, and loss of

goblet cells are more pronounced in Nox1KO mice than in WT

mice. (B) Mouse body weight changes after TM treatment. (C)
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Clinical disease activity index (DAI) score was assessed as in Fig.

S8. (D) Cumulative histopathology score was calculated in the

proximal, median, and distal colon and included the presence of

inflammatory cells, general destruction of the architecture, loss of

goblet cells, ulcers. Statistics: p-values for Kruskal-Wallis non-

parametric analysis are shown, Dunn’s multiple comparison test,

*p,0.05, **p,0.01, ***p,0.001.

(TIF)

Figure S10 Expression of ER stress markers. (A) The

mRNA levels of spliced (XBP-1s) XBP-1 form, GRP78, GRP94,

EDEM1, ATF4, and GADD34 in the distal colon of 3–4-week old

WT (n= 10), Nox1KO (n= 10), IL10KO (n= 10), and IL10/

Nox1dKO (n= 10) mice were determined by qPCR and normal-

ized to b-actin with the mean ratio of the WT group corrected to

1. Statistics: box plots show median, quartiles, and range; p-values

for Kruskal-Wallis non-parametric analysis are shown, Dunn’s

multiple comparison test versus WT, *p,0.05, **p,0.01, NS, not

significant. (B) Crypt sections of the distal colon of 4-week old WT

(n=5), Nox1KO (n= 5), IL10KO (n= 5), and IL10/Nox1dKO

(n = 5) mice showing the immunohistochemical detection of

ATF6a (left panel) and GRP78 (right panel). Note that ATF6a
and GRP78 proteins are essentially expressed in the epithelial

cells. (C) Representative immunoblot analysis of P-eIF2a (Ser51)

and total eIF2a protein expression in the distal colon of WT (n= 5)

and Nox1KO (n= 5) mice treated or not (Ctrl) with 2 mg/kg
tunicamycin (TM). b-actin was used as loading control. The P-

eIF2a/eIF2a ratio was quantified and densitometric analyses are

shown. P-values for Kruskal-Wallis non-parametric analysis are

shown.

(TIF)

Figure S11 (A) Concentrations of IL-1b, TNF-b, IL-17A,
IFN-b, and IL-6 in the distal colonic explant superna-
tants of vehicle- (Vh, n=8) or salubrinal (Sal, n= 10)-

treated IL10/Nox1dKO mice aged 6–7 weeks. Statistics: box
plots show median, quartiles, and range; P-values for Mann-

Whitney U-test analysis are shown. (B) Representative immuno-

histological analysis of Foxp3+ cells in vehicle- (Vh, n= 5) or

salubrinal (Sal, n = 5)-treated IL10/Nox1dKO mice aged 6–7

weeks. (C) Treg (CD4+ CD25+ Foxp3+) cell count in the spleen of

vehicle- (Vh, n = 10) or salubrinal (Sal, n = 10)-treated IL10/

Nox1dKO mice aged 6–7 weeks expressed as a total lymphocyte

percentage in the spleen. Statistics: box plots show median,

quartiles, and range; P-values for Mann-Whitney U-test analysis

are shown.

(TIF)

Table S1 Summary of the clinical characteristics of patients with

UC and controls.

(TIF)
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