235 research outputs found
Anomalies in cosmic rays: New particles versus charm?
For a long time two anomalies are observed in cosmic rays at energies E approx. = 100 TeV: (1) the generation of long-flying cascades in the hadron calorimeter (the so-called Tien-Shan effect) and; (2) the enhancement of direct muon yield as compared with the accelerator energy region. The aim is to discuss the possibility that both anomalies have common origins arising from production and decays of the same particles. the main conclusions are the following: (1) direct muons cannot be generated by any new particles with mass exceeding 10+20 GeV; and (2) if both effects are originated from the charmed hadrons, then the needed charm hadroproduction cross section is unexpectedly large as compared with the quark-gluon model predictions
Search for the Production of Element 112 in the 48Ca + 238U Reaction
We have searched for the production of element 112 in the reaction of 231 MeV
48Ca with 238U. We have not observed any events with a "one event" upper limit
cross section of 1.6 pb for EVR-fission events and 1.8 pb for EVR-alpha events.Comment: 6 pages, 3 figures, submitted to Phys. Rev.
Possibility of synthesizing doubly closed superheavy nucleus
The possibility of synthesizing a doubly magic superheavy nucleus,
, is investigated on the basis of fluctuation-dissipation
dynamics. In order to synthesize this nucleus, we must generate more
neutron-rich compound nuclei because of the neutron emissions from excited
compound nuclei. The compound nucleus has two advantages to
achieving a high survival probability. First, because of small neutron
separation energy and rapid cooling, the shell correction energy recovers
quickly. Secondly, owing to neutron emissions, the neutron number of the
nucleus approaches that of the double closed shell and the nucleus obtains a
large fission barrier. Because of these two effects, the survival probability
of does not decrease until the excitation energy MeV.
These properties lead to a rather high evaporation reside cross section.Comment: 5 pages, 6 figure
Two-Step Model of Fusion for Synthesis of Superheavy Elements
A new model is proposed for fusion mechanisms of massive nuclear systems
where so-called fusion hindrance exists. The model describes two-body collision
processes in an approaching phase and shape evolutions of an amalgamated system
into the compound nucleus formation. It is applied to Ca-induced
reactions and is found to reproduce the experimental fusion cross sections
extremely well, without any free parameter. Combined with the statistical decay
theory, residue cross sections for the superheavy elements can be readily
calculated. Examples are given.Comment: 4 pages, 4 figure
Prospects for the discovery of the next new element: Influence of projectiles with Z > 20
The possibility of forming new superheavy elements with projectiles having Z
> 20 is discussed. Current research has focused on the fusion of 48Ca with
actinides targets, but these reactions cannot be used for new element
discoveries in the future due to a lack of available target material. The
influence on reaction cross sections of projectiles with Z > 20 have been
studied in so-called analog reactions, which utilize lanthanide targets
carefully chosen to create compound nuclei with energetics similar to those
found in superheavy element production. The reactions 48Ca, 45Sc, 50Ti, 54Cr +
159Tb, 162Dy have been studied at the Cyclotron Institute at Texas A&M
University using the Momentum Achromat Recoil Spectrometer. The results of
these experimental studies are discussed in terms of the influence of
collective enhancements to level density for compound nuclei near closed
shells, and the implications for the production of superheavy elements. We have
observed no evidence to contradict theoretical predictions that the maximum
cross section for the 249Cf(50Ti, 4n)295120 and 248Cm(54Cr, 4n)298120 reactions
should be in the range of 10-100 fb.Comment: An invited talk given by Charles M. Folden III at the 11th
International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio,
Texas, USA, May 27-June 1, 2012. Also contains information presented by
Dmitriy A. Mayorov and Tyler A. Werke in separate contributions to the
conference. This contribution will appear in the NN2012 Proceedings in
Journal of Physics: Conference Series (JPCS
The effect of atomic electrons on nuclear fission
We calculate correction to the nuclear fission barrier produced by the atomic
electrons. The result presented in analytical form is convenient to use in
future nuclear calculations. The atomic electrons have a small stabilizing
effect on nuclei, increasing lifetime in nuclear fission channel. This effect
gives a new instrument to study the fission process.Comment: 4 pages, 1 figur
Fusion hindrance and roles of shell effects in superheavy mass region
We present the first attempt of systematically investigating the effects of
shell correction energy for a dynamical process, which includes fusion,
fusion-fission and quasi-fission processes. In the superheavy mass region, for
the fusion process, shell correction energy plays a very important role and
enhances the fusion probability when the colliding partner has a strong shell
structure. By analyzing the trajectory in three-dimensional coordinate space
with the Langevin equation, we reveal the mechanism of the enhancement of the
fusion probability caused by `cold fusion valleys'. The temperature dependence
of shell correction energy is considered.Comment: 31 pages, 23 figures, Accepted for publication in Nuclear Physics
Identification of new transitions and mass assignments of levels in Pr
The previously reported levels assigned to 151,152,153Pr have recently been
called into question regarding their mass assignment. The above questioned
level assignments are clarified by measuring g-transitions tagged with A and Z
in an in-beam experiment in addition to the measurements from 252Cf spontaneous
fission (SF) and establish new spectroscopic information from to
in the Pr isotopic chain. The isotopic chain 143-153Pr has been studied from
the spontaneous fission of 252Cf by using Gammasphere and also from the
measurement of the prompt g-rays in coincidence with isotopically-identified
fission fragments using VAMOS++ and EXOGAM at GANIL. The latter were produced
using 238U beams on a 9Be target at energies around the Coulomb barrier. The
g-g-g-g data from 252Cf (SF) and those from the GANIL in-beam A- and Z-gated
spectra were combined to unambiguously assign the various transitions and
levels in 151,152,153Pr and other isotopes. New transitions and bands in
145,147,148,149,150Pr were identified by using g-g-g and g-g-g-g coincidences
and A and Z gated g-g spectra. The transitions and levels previously assigned
to 151,153Pr have been confirmed by the (A,Z) gated spectra. The transitions
previously assigned to 152Pr are now assigned to 151Pr on the basis of the
(A,Z) gated spectra. Two new bands with 20 new transitions in 152Pr and one new
band with 7 new transitions in 153Pr are identified from the g-g-g-g
coincidence spectra and the (A,Z) gated spectrum. In addition, new g-rays are
also reported in 143-146Pr. New levels of 145,147-153Pr have been established,
reliable mass assignments of the levels in 151,152,153Pr have been reported and
new transitions have been identified in 143-146Pr showing the new avenues that
are opened by combining the two experimental approaches.Comment: Accepted in Phys. Rev.
Dynamic study on fusion reactions for Ca+Zr around Coulomb barrier
By using the updated improved Quantum Molecular Dynamics model in which a
surface-symmetry potential term has been introduced for the first time, the
excitation functions for fusion reactions of Ca+Zr at
energies around the Coulomb barrier have been studied. The experimental data of
the fusion cross sections for Ca+Zr have been reproduced
remarkably well without introducing any new parameters. The fusion cross
sections for the neutron-rich fusion reactions of Ca+Zr around
the Coulomb barrier are predicted to be enhanced compared with a
non-neutron-rich fusion reaction. In order to clarify the mechanism of the
enhancement of the fusion cross sections for neutron-rich nuclear fusions, we
pay a great attention to study the dynamic lowering of the Coulomb barrier
during a neck formation. The isospin effect on the barrier lowering is
investigated. It is interesting that the effect of the projectile and target
nuclear structure on fusion dynamics can be revealed to a certain extent in our
approach. The time evolution of the N/Z ratio at the neck region has been
firstly illustrated. A large enhancement of the N/Z ratio at neck region for
neutron-rich nuclear fusion reactions is found.Comment: 21 pages, 7 figures,3 table
The structure of superheavy elements newly discovered in the reaction of Kr with Pb
The structure of superheavy elements newly discovered in the
Pb(Kr,n) reaction at Berkeley is systematically studied in the
Relativistic Mean Field (RMF) approach. It is shown that various usually
employed RMF forces, which give fair description of normal stable nuclei, give
quite different predictions for superheavy elements. Among the effective forces
we tested, TM1 is found to be the good candidate to describe superheavy
elements. The binding energies of the 118 nucleus and its
decay daughter nuclei obtained using TM1 agree with those of FRDM
within 2 MeV. Similar conclusion that TM1 is the good interaction is also drawn
from the calculated binding energies for Pb isotopes with the Relativistic
Continuum Hartree Bogoliubov (RCHB) theory. Using the pairing gaps obtained
from RCHB, RMF calculations with pairing and deformation are carried out for
the structure of superheavy elements. The binding energy, shape, single
particle levels, and the Q values of the decay are
discussed, and it is shown that both pairing correlation and deformation are
essential to properly understand the structure of superheavy elements. A good
agreement is obtained with experimental data on . %Especially, the
atomic number %dependence of %seems to match with the experimental
observationComment: 19 pages, 5 figure
- âŠ