134 research outputs found
Ages and Abundances of Red Sequence Galaxies as a Function of LINER Emission Line Strength
Although the spectrum of a prototypical early-type galaxy is assumed to lack
emission lines, a substantial fraction (likely as high as 30%) of nearby red
sequence galaxy spectra contain emission lines with line ratios characteristic
of low ionization nuclear emission-line regions (LINERs). We use spectra of
~6000 galaxies from the Sloan Digital Sky Survey (SDSS) in a narrow redshift
slice (0.06 < z < 0.08) to compare the stellar populations of red sequence
galaxies with and without LINER-like emission. The spectra are binned by
internal velocity dispersion and by emission properties to produce high S/N
stacked spectra. The recent stellar population models of R. Schiavon (2007)
make it possible to measure ages, [Fe/H], and individual elemental abundance
ratios [Mg/Fe], [C/Fe], [N/Fe], and [Ca/Fe] for each of the stacked spectra. We
find that red sequence galaxies with strong LINER-like emission are
systematically 2-3.5 Gyr (10-40%) younger than their emission-free counterparts
at the same velocity dispersion. This suggests a connection between the
mechanism powering the emission (whether AGN, post-AGB stars, shocks, or
cooling flows) and more recent star formation in the galaxy. We find that mean
stellar age and [Fe/H] increase with velocity dispersion for all galaxies.
Elemental abundance [Mg/Fe] increases modestly with velocity dispersion in
agreement with previous results, and [C/Fe] and [N/Fe] increase more strongly
with velocity dispersion than does [Mg/Fe]. [Ca/Fe] appears to be roughly solar
for all galaxies. At fixed velocity dispersion, galaxies with fainter r-band
luminosities have lower [Fe/H] and older ages but similar abundance ratios
compared to brighter galaxies.Comment: 25 pages, 17 figures, Accepted for publication in ApJ as of 16 July
2007; acceptance status updated, paper unchange
The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey
The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic
data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data
release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median
z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar
spectra, along with the data presented in previous data releases. These spectra
were obtained with the new BOSS spectrograph and were taken between 2009
December and 2011 July. In addition, the stellar parameters pipeline, which
determines radial velocities, surface temperatures, surface gravities, and
metallicities of stars, has been updated and refined with improvements in
temperature estimates for stars with T_eff<5000 K and in metallicity estimates
for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars
presented in DR8, including stars from SDSS-I and II, as well as those observed
as part of the SDSS-III Sloan Extension for Galactic Understanding and
Exploration-2 (SEGUE-2).
The astrometry error introduced in the DR8 imaging catalogs has been
corrected in the DR9 data products. The next data release for SDSS-III will be
in Summer 2013, which will present the first data from the Apache Point
Observatory Galactic Evolution Experiment (APOGEE) along with another year of
data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at
http://www.sdss3.org/dr
The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III
The Sloan Digital Sky Survey (SDSS) started a new phase in August 2008, with
new instrumentation and new surveys focused on Galactic structure and chemical
evolution, measurements of the baryon oscillation feature in the clustering of
galaxies and the quasar Ly alpha forest, and a radial velocity search for
planets around ~8000 stars. This paper describes the first data release of
SDSS-III (and the eighth counting from the beginning of the SDSS). The release
includes five-band imaging of roughly 5200 deg^2 in the Southern Galactic Cap,
bringing the total footprint of the SDSS imaging to 14,555 deg^2, or over a
third of the Celestial Sphere. All the imaging data have been reprocessed with
an improved sky-subtraction algorithm and a final, self-consistent photometric
recalibration and flat-field determination. This release also includes all data
from the second phase of the Sloan Extension for Galactic Understanding and
Evolution (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars
at both high and low Galactic latitudes. All the more than half a million
stellar spectra obtained with the SDSS spectrograph have been reprocessed
through an improved stellar parameters pipeline, which has better determination
of metallicity for high metallicity stars.Comment: Astrophysical Journal Supplements, in press (minor updates from
submitted version
Very Low-Mass Stellar and Substellar Companions to Solar-Like Stars from MARVELS I: A Low Mass Ratio Stellar Companion to TYC 4110-01037-1 in a 79-day Orbit
TYC 4110-01037-1 has a low-mass stellar companion, whose small mass ratio and
short orbital period are atypical amongst solar-like (Teff ~< 6000 K) binary
systems. Our analysis of TYC 4110-01037-1 reveals it to be a moderately aged
(~<5 Gyr) solar-like star having a mass of 1.07 +/- 0.08 MSun and radius of
0.99 +/- 0.18 RSun. We analyze 32 radial velocity measurements from the
SDSS-III MARVELS survey as well as 6 supporting radial velocity measurements
from the SARG spectrograph on the 3.6m TNG telescope obtained over a period of
~2 years. The best Keplerian orbital fit parameters were found to have a period
of 78.994 +/- 0.012 days, an eccentricity of 0.1095 +/- 0.0023, and a
semi-amplitude of 4199 +/- 11 m/s. We determine the minimum companion mass (if
sin i = 1) to be 97.7 +/- 5.8 MJup. The system's companion to host star mass
ratio, >0.087 +/- 0.003, places it at the lowest end of observed values for
short period stellar companions to solar-like (Teff ~< 6000 K) stars. One
possible way to create such a system would be if a triple-component stellar
multiple broke up into a short period, low q binary during the cluster
dispersal phase of its lifetime. A candidate tertiary body has been identified
in the system via single-epoch, high contrast imagery. If this object is
confirmed to be co-moving, we estimate it would be a dM4 star. We present these
results in the context of our larger-scale effort to constrain the statistics
of low mass stellar and brown dwarf companions to FGK-type stars via the
MARVELS survey.Comment: 22 pages; accepted in A
Do observed metallicity gradients of early-type galaxies support a hybrid formation scenario?
We measure radial gradients of the Mg2 index in 15 E-E/S0 and 14 S0 galaxies.
Our homogeneous data set covers a large range of internal stellar velocity
dispersions (2.0<logsigma<2.5) and Mg2 gradients (dMg2/dlogr/re* up to
-0.14mag/dex). We find for the first time, a noticeable lower boundary in the
relation between Mg2 gradient and sigma along the full range of sigma, which
may be populated by galaxies predominantly formed by monolithic collapse. At
high sigma, galaxies showing flatter gradients could represent objects which
suffered either important merging episodes or later gas accretion. These
processes contribute to the flattening of the metallicity gradients and their
increasing importance could define the distribution of the objects above the
boundary expected by the ``classical'' monolithic process. This result is in
marked contrast with previous works which found a correlation between
dMg2/dlogr/re* and sigma confined to the low mass galaxies, suggesting that
only galaxies below some limiting sigma were formed by collapse whereas the
massive ones by mergers. We show observational evidence that a hybrid scenario
could arise also among massive galaxies. Finally, we estimated d[Z/H] from Mg2
and Hbeta measurements and single stellar population models. The conclusions
remain the same, indicating that the results cannot be ascribed to age effects
on Mg2.Comment: 11 pages, 2 figures, to appear in ApJLetter
- …
