584 research outputs found

    Leukemia-associated Rho guanine-nucleotide exchange factor is not critical for RhoA regulation, yet is important for platelet activation and thrombosis in mice.

    Get PDF
    BACKGROUND: RhoA is an important regulator of platelet responses downstream of Gα13 , yet we still know little about its regulation in platelets. Leukemia-associated Rho guanine-nucleotide exchange factor (GEF [LARG]), a RhoA GEF, is highly expressed in platelets and may constitute a major upstream activator of RhoA. To this end, it is important to determine the role of LARG in platelet function and thrombosis. METHODS AND RESULTS: Using a platelet-specific gene knockout, we show that the absence of LARG results in a marked reduction in aggregation and dense-granule secretion in response to the thromboxane mimetic U46619 and proteinase-activated receptor 4-activating peptide, AYPGKF, but not to adenosine diphosphate. In a ferric chloride thrombosis model in vivo, this translated into a defect, under mild injury conditions. Importantly, agonist-induced RhoA activation was not affected by the absence of LARG, although basal activity was reduced, suggesting that LARG may play a housekeeper role in regulating constitutive RhoA activity. CONCLUSIONS: LARG plays an important role in platelet function and thrombosis in vivo. However, although LARG may have a role in regulating the resting activation state of RhoA, its role in regulating platelet function may principally be through RhoA-independent pathways, possibly through other Rho family members

    Hyperhomocysteinemia is detrimental to pregnancy in mice and is associated with preterm birth

    Get PDF
    AbstractElevated levels of homocysteine produce detrimental effects in humans but its role in preterm birth is not known. Here we used a mouse model of hyperhomocysteinemia to examine the relevance of homocysteine to preterm birth. The mouse carries a heterozygous deletion of cystathionine β-synthase (Cbs+/−). Gestational period was monitored in wild type and Cbs+/− female mice. Mouse uterine and placental tissues, human primary trophoblast cells, and human myometrial and placental cell lines were used to determine the influence of homocysteine on expression of specific genes in vitro. The activity of BKCa channel in the myometrial cell line was monitored using the patch-clamp technique. We found that hyperhomocysteinemia had detrimental effects on pregnancy and induced preterm birth in mice. Homocysteine increased the expression of oxytocin receptor and Cox-2 as well as PGE2 production in uterus and placenta, and initiated premature uterine contraction. A Cox-2 inhibitor reversed these effects. Gpr109a, a receptor for niacin, induced Cox-2 in uterus. Homocysteine upregulated GPR109A and suppressed BKCa channel activity in human myometrial cells. Deletion of Gpr109a in Cbs+/− mice reversed premature birth. We conclude that hyperhomocysteinemia causes preterm birth in mice through upregulation of the Gpr109a/Cox-2/PGE2 axis and that pharmacological blockade of Gpr109a may have potential in prevention of preterm birth

    Attitudes of Germans towards distributive issues in the German health system

    Get PDF
    Social health care systems are inevitably confronted with the scarcity of resources and the resulting distributional challenges. Since prioritization implies distributional effects, decisions on respective rules should take citizens’ preferences into account. Thus, knowledge about citizens’ attitudes and preferences regarding different distributional issues implied by the type of financing health care is necessary to judge the public acceptance of a health system. In this study we concentrate on two distributive issues in the German health system: First, we analyse the acceptance of prioritizing decisions concerning the treatment of certain patient groups, in this case patients who all need a heart operation. Here we focus on the fact that a patient is strong smoker or a non-smoker, the criteria of age or the fact that a patient has or does not have young children. Second, we investigate Germans’ opinions towards income dependent health services. The results reveal strong effects of individuals’ attitudes regarding general aspects of the health system on priorities, e.g. that individuals behaving health demanding should not be preferred. In addition, experiences of limited access to health services are found to have a strong influence on citizens’ attitudes, too. Finally, decisions about different prioritization criteria are found to be not independent.

    Activation of lactate receptor HCAR1 down-modulates neuronal activity in rodent and human brain tissue.

    Get PDF
    Lactate can be used by neurons as an energy substrate to support their activity. Evidence suggests that lactate also acts on a metabotropic receptor called HCAR1, first described in the adipose tissue. Whether HCAR1 also modulates neuronal circuits remains unclear. In this study, using qRT-PCR, we show that HCAR1 is present in the human brain of epileptic patients who underwent resective surgery. In brain slices from these patients, pharmacological HCAR1 activation using a non-metabolized agonist decreased the frequency of both spontaneous neuronal Ca <sup>2+</sup> spiking and excitatory post-synaptic currents (sEPSCs). In mouse brains, we found HCAR1 expression in different regions using a fluorescent reporter mouse line and in situ hybridization. In the dentate gyrus, HCAR1 is mainly present in mossy cells, key players in the hippocampal excitatory circuitry and known to be involved in temporal lobe epilepsy. By using whole-cell patch clamp recordings in mouse and rat slices, we found that HCAR1 activation causes a decrease in excitability, sEPSCs, and miniature EPSCs frequency of granule cells, the main output of mossy cells. Overall, we propose that lactate can be considered a neuromodulator decreasing synaptic activity in human and rodent brains, which makes HCAR1 an attractive target for the treatment of epilepsy

    YAP and TAZ protect against white adipocyte cell death during obesity

    Get PDF
    The expansion of the white adipose tissue (WAT) in obesity goes along with increased mechanical, metabolic and inflammatory stress. How adipocytes resist this stress is still poorly understood. Both in human and mouse adipocytes, the transcriptional co-activators YAP/TAZ and YAP/TAZ target genes become activated during obesity. When fed a high-fat diet (HFD), mice lacking YAP/TAZ in white adipocytes develop severe lipodystrophy with adipocyte cell death. The pro-apoptotic factor BIM, which is downregulated in adipocytes of obese mice and humans, is strongly upregulated in YAP/TAZ-deficient adipocytes under HFD, and suppression of BIM expression reduces adipocyte apoptosis. In differentiated adipocytes, TNFα and IL-1β promote YAP/TAZ nuclear translocation via activation of RhoA-mediated actomyosin contractility and increase YAP/TAZ-mediated transcriptional regulation by activation of c-Jun N-terminal kinase (JNK) and AP-1. Our data indicate that the YAP/TAZ signaling pathway may be a target to control adipocyte cell death and compensatory adipogenesis during obesity

    Smooth muscle specific Rac1 deficiency induces hypertension by preventing p116RIP3-dependent RhoA inhibition

    Get PDF
    BACKGROUND: Increasing evidence implicates overactivation of RhoA as a critical component of the pathogenesis of hypertension. Although a substantial body of work has established that Rac1 functions antagonize RhoA in a broad range of physiological processes, the role of Rac1 in the regulation of vascular tone and blood pressure is not fully elucidated. METHODS AND RESULTS: To define the role of Rac1 in vivo in vascular smooth muscle cells (vSMC), we generated smooth muscle (SM)-specific Rac1 knockout mice (SM-Rac1-KO) and performed radiotelemetric blood pressure recordings, contraction measurements in arterial rings, vSMC cultures and biochemical analyses. SM-Rac1-KO mice develop high systolic blood pressure sensitive to Rho kinase inhibition by fasudil. Arteries from SM-Rac1-KO mice are characterized by a defective NO-dependent vasodilation and an overactivation of RhoA/Rho kinase signaling. We provide evidence that Rac1 deletion-induced hypertension is due to an alteration of cGMP signaling resulting from the loss of Rac1-mediated control of type 5 PDE activity. Consequently, cGMP-dependent phosphorylation and binding of RhoA with its inhibitory partner, the phosphatase-RhoA interacting protein (p116(RIP3)), are decreased. CONCLUSIONS: Our data reveal that the depletion of Rac1 in SMC decreases cGMP-dependent p116(RIP3)/RhoA interaction and the subsequent inhibition of RhoA signaling. Thus, we unveil an in vivo role of Rac1 in arterial blood pressure regulation and a new pathway involving p116(RIP3) that contributes to the antagonistic relationship between Rac1 and RhoA in vascular smooth muscle cells and their opposite roles in arterial tone and blood pressure
    corecore