9 research outputs found

    Runx3 regulates mouse TGF-β-mediated dendritic cell function and its absence results in airway inflammation

    No full text
    Runx3 transcription factor regulates cell lineage decisions in thymopoiesis and neurogenesis. Here we report that Runx3 knockout (KO) mice develop spontaneous eosinophilic lung inflammation associated with airway remodeling and mucus hypersecretion. Runx3 is specifically expressed in mature dendritic cells (DC) and mediates their response to TGF-β. In the absence of Runx3, DC become insensitive to TGF-β-induced maturation inhibition, and TGF-β-dependent Langerhans cell development is impaired. Maturation of Runx3 KO DC is accelerated and accompanied by increased efficacy to stimulate T cells and aberrant expression of β2-integrins. Lung alveoli of Runx3 KO mice accumulate DC characteristic of allergic airway inflammation. Taken together, abnormalities in DC function and subset distribution may constitute the primary immune system defect, which leads to the eosinophilic lung inflammation in Runx3 KO mice. These data may help elucidate the molecular mechanisms underlying the pathogenesis of allergic airway inflammation in humans

    Prophylactic antenatal N-Acetyl Cysteine administration combined with postnatal administration can decrease mortality and injury markers associated with necrotizing enterocolitis in a rat model.

    No full text
    BACKGROUND:Necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease of neonates, especially premature neonates. To date, there is no prophylactic treatment against NEC, except breast milk and slow increase in enteral feeding, and there is no antenatal prophylaxis. AIMS:To assess possible protective effects of antenatal N-Acetyl Cysteine (NAC) against the intestinal pathophysiological changes associated with NEC in a rat model of NEC and against its associated mortality. METHODS:Newborn Sprague-Dawley rats were divided into 5 groups: control (n = 33); NEC (n = 32)-subjected to hypoxia and formula feeding for 4 days to induce NEC; NEC-NAC (n = 34)-with induced NEC and concomitant postnatal NAC administration; NAC-NEC (n = 33)-born to dams treated with NAC for the last 3 days of pregnancy starting at gestational age of 18 days, and then subjected to induced NEC after birth; NAC-NEC-NAC (n = 36)-subjected to induced NEC with both prenatal and postnatal NAC treatment. At day of life 5, weight and survival of pups in the different groups were examined, and pups were euthanized. Ileal TNF-ι, IL-6, IL-1β, IL-10, NFkB p65, iNOS and cleaved caspase 3 protein levels (western blot) and mRNA expression (RT-PCR) were compared between groups. RESULTS:Pup mortality was significantly reduced in the NAC-NEC-NAC group compared to NEC (11% vs. 34%, P<0.05). Ileal protein levels and mRNA expression of all injury markers tested except IL-10 were significantly increased in NEC compared to control. These markers were significantly reduced in all NAC treatment groups (NEC-NAC, NAC-NEC, and NAC-NEC-NAC) compared to NEC. The most pronounced decrease was observed in the NAC-NEC NAC group. CONCLUSIONS:Antenatal NAC decreases injury markers and mortality associated with NEC in a rat model. Antenatal administration of NAC may present a novel approach for NEC prophylaxis in pregnancies with risk for preterm birth

    Tumor growth and angiogenesis are dependent on the presence of immature dendritic cells

    No full text
    Dendritic cells (DCs)—immunomodulatory cells that initiate adaptive immune responses—have recently been shown to exert proangiogenic effects when infiltrating the tumor microenvironment. As tumors that escape immune surveillance inhibit DC maturation, we explored whether maturation status determines their ability to promote angiogenesis and whether angiogenesis depends on the presence of DCs. Using mouse xenograft models of human tumors, we show that fast-growing “angiogenic” tumors are infiltrated by a more immature DC population than respective dormant avascular tumors. Accordingly, supplementation of immature DCs, but not mature DCs, enhanced tumor growth. When DCs were mixed with Matrigel and injected subcutaneously into mice, only immature DCs promoted the ingrowth of patent blood vessels. Notably, depletion of DCs in a transgenic mouse model that allows for their conditional ablation completely abrogated basic fibroblast growth factor-induced angiogenesis in Matrigel plugs, and significantly inhibited tumor growth in these mice. Because immature DCs actively promote angiogenesis and tumor growth, whereas DC maturation or ablation suppresses this response, we conclude that angiogenesis is dependent on the presence of immature DCs. Thus, cancer immunotherapies that promote DC maturation may act by both augmenting the host immune response to the tumor and by suppressing tumor angiogenesis.—Fainaru, O., Almog, N., Yung, C. W., Nakai, K., Montoya-Zavala, M., Abollahi, A., D’Amato, R., Ingber, D. E. Tumor growth and angiogenesis are dependent on the presence of immature dendritic cells
    corecore