19 research outputs found

    On the contribution of ULXs to stellar feedback: an intermediate mass black hole candidate and the population of ULXs in the low-metallicity starburst galaxy ESO 338-4

    Full text link
    X-ray radiation from accreting compact objects is an important part of stellar feedback. The metal-poor galaxy ESO 338-4 has experienced vigorous starburst during the last 40 Myr and contains some of the most massive super star clusters in the nearby Universe. Given its starburst age and its star-formation rate, ESO 338-4 is one of the most efficient nearby manufactures of neutron stars and black holes, hence providing an excellent laboratory for feedback studies. We compared X-ray images and spectra obtained by XMM-Newton and Chandra telescopes with integral field spectroscopic VLT MUSE observations in the optical to constrain the nature of strong X-ray emitters. X-ray observations uncover three ultraluminous X-ray sources (ULXs) in ESO 338-4. The brightest among them, ESO 338~X-1, has X-ray luminosity in excess of 10^{40} erg/s. We speculate that ESO 338-4 is powered by accretion on an intermediate-mass (~300Msun) black hole. We show that X-ray radiation from ULXs and hot superbubbles strongly contributes to HeII ionization and general stellar feedback in this template starburst galaxy.Comment: A&A, in pres

    Kinematics of Interstellar Gas in Nearby UV-Selected Galaxies Measured with HST/STIS Spectroscopy

    Get PDF
    We measure Doppler shifts of interstellar absorption lines in HST/STIS spectra of individual star clusters in nearby UV-selected galaxies. Values for systemic velocities, which are needed to quantify outflow speeds, are taken from the literature, and verified with stellar lines. We detect outflowing gas in eight of 17 galaxies via low-ionization lines (e.g., CII, SiII, AlII), which trace cold and/or warm gas. The starbursts in our sample are intermediate in luminosity (and mass) to dwarf galaxies and luminous infrared galaxies (LIRGs), and we confirm that their outflow speeds (ranging from -100 km/s to nearly -520 km/s with an accuracy of ~80 km/s) are intermediate to those previously measured in dwarf starbursts and LIRGs. We do not detect the outflow in high-ionization lines (such as CIV or SiIV); higher quality data will be needed to empirically establish how velocities vary with the ionization state of the outflow. We do verify that the low-ionization UV lines and optical NaI doublet give roughly consistent outflow velocities solidifying an important link between studies of galactic winds at low and high redshift. To obtain higher signal-to-noise, we create a local average composite spectrum, and compare it to the high-z Lyman Break composite spectrum. Surprisingly, the low-ionization lines show similar outflow velocities in the two samples. We attribute this to a combination of weighting towards higher luminosities in the local composite, as well as both samples being on average brighter than the ``turnover'' luminosity in the v-SFR relation.Comment: 41 pages, 14 figures, accepted for publication in The Astrophysical Journa

    Emission Line Metallicities From The Faint Infrared Grism Survey and VLT/MUSE

    Get PDF
    We derive direct measurement gas-phase metallicities of 7.4<12+log⁥(O/H)<8.47.4 < 12 + \log(O/H) < 8.4 for 14 low-mass Emission Line Galaxies (ELGs) at 0.3<z<0.80.3 < z < 0.8 identified in the Faint Infrared Grism Survey (FIGS). We use deep slitless G102 grism spectroscopy of the Hubble Ultra Deep Field (HUDF), dispersing light from all objects in the field at wavelengths between 0.85 and 1.15 microns. We run an automatic search routine on these spectra to robustly identify 71 emission line sources, using archival data from VLT/MUSE to measure additional lines and confirm redshifts. We identify 14 objects with 0.3<z<0.80.3 < z < 0.8 with measurable O[III]λ\lambda4363 \AA\ emission lines in matching VLT/MUSE spectra. For these galaxies, we derive direct electron-temperature gas-phase metallicities with a range of 7.4<12+log⁥(O/H)<8.47.4 < 12 + \log(O/H) < 8.4. With matching stellar masses in the range of 107.9M⊙<M⋆<1010.4M⊙10^{7.9} M_{\odot} < M_{\star} < 10^{10.4} M_{\odot}, we construct a mass-metallicity (MZ) relation and find that the relation is offset to lower metallicities compared to metallicities derived from alternative methods (e.g.,R23R_{23}, O3N2, N2O2) and continuum selected samples. Using star formation rates (SFR) derived from the HαH\alpha emission line, we calculate our galaxies' position on the Fundamental Metallicity Relation (FMR), where we also find an offset toward lower metallicities. This demonstrates that this emission-line-selected sample probes objects of low stellar masses but even lower metallicities than many comparable surveys. We detect a trend suggesting galaxies with higher Specific Star Formation (SSFR) are more likely to have lower metallicity. This could be due to cold accretion of metal-poor gas that drives star formation, or could be because outflows of metal-rich stellar winds and SNe ejecta are more common in galaxies with higher SSFR.Comment: 14 pages, 11 figures, accepted in Ap

    Nebular C IV 1550 Imaging of the Metal-Poor Starburst Mrk 71: Direct Evidence of Catastrophic Cooling

    Full text link
    We use the Hubble Space Telescope ACS camera to obtain the first spatially resolved, nebular imaging in the light of C IV 1548,1551 by using the F150LP and F165LP filters. These observations of the local starburst Mrk 71 in NGC 2366 show emission apparently originating within the interior cavity around the dominant super star cluster (SSC), Knot A. Together with imaging in He II 4686 and supporting STIS FUV spectroscopy, the morphology and intensity of the C IV nebular surface brightness and the C IV / He II ratio map provide direct evidence that the mechanical feedback is likely dominated by catastrophic radiative cooling, which strongly disrupts adiabatic superbubble evolution. The implied extreme mass loading and low kinetic efficiency of the cluster wind are reasonably consistent with the wind energy budget, which is probably enhanced by radiation pressure. In contrast, the Knot B SSC lies within a well-defined superbubble with associated soft X-rays and He II 1640 emission, which are signatures of adiabatic, energy-driven feedback from a supernova-driven outflow. This system lacks clear evidence of C IV from the limb-brightened shell, as expected for this model, but the observations may not be deep enough to confirm its presence. We also detect a small C IV-emitting object that is likely an embedded compact H II region. Its C IV emission may indicate the presence of very massive stars (> 100 M_sun) or strongly pressure-confined stellar feedback.Comment: 13 pages, 8 figures. Accepted to ApJ Letter

    FIGS -- Faint Infrared Grism Survey: Description and Data Reduction

    Get PDF
    The Faint Infrared Grism Survey (FIGS) is a deep Hubble Space Telescope (HST) WFC3/IR (Wide Field Camera 3 Infrared) slitless spectroscopic survey of four deep fields. Two fields are located in the Great Observatories Origins Deep Survey-North (GOODS-N) area and two fields are located in the Great Observatories Origins Deep Survey-South (GOODS-S) area. One of the southern fields selected is the Hubble Ultra Deep Field. Each of these four fields were observed using the WFC3/G102 grism (0.8ÎŒm\mu m-1.15ÎŒm\mu m continuous coverage) with a total exposure time of 40 orbits (~ 100 kilo-seconds) per field. This reaches a 3 sigma continuum depth of ~26 AB magnitudes and probes emission lines to ≈10−17 erg s−1 cm−2\approx 10^{-17}\ erg\ s^{-1} \ cm^{-2}. This paper details the four FIGS fields and the overall observational strategy of the project. A detailed description of the Simulation Based Extraction (SBE) method used to extract and combine over 10000 spectra of over 2000 distinct sources brighter than m_F105W=26.5 mag is provided. High fidelity simulations of the observations is shown to significantly improve the background subtraction process, the spectral contamination estimates, and the final flux calibration. This allows for the combination of multiple spectra to produce a final high quality, deep, 1D-spectra for each object in the survey.Comment: 21 Pages. 17 Figures. To appear in Ap

    Spectroscopic study of blue compact galaxies III. Empirical population synthesis

    Full text link
    This is the third paper of a series dedicated to the study of the star formation rates, star formation histories, metallicities and dust contents of a sample of blue compact galaxies (BCGs). We constrain the stellar contents of 73 blue compact galaxies by analyzing their continuum spectra and the equivalent widths of strong stellar absorption features using a technique of empirical population synthesis based on a library of observed star-cluster spectra. Our results indicate that blue compact galaxies are typically age-composite stellar systems; in addition to young stars, intermediate-age and old stars contribute significantly to the 5870 A continuum emission of most galaxies in our sample. The stellar populations of blue compact galaxies also span a variety of metallicities. The ongoing episodes of star formation started typically less than a billion years ago. Some galaxies may be undergoing their first global episode of star formation, while for most galaxies in our sample, older stars are found to contribute up to half the optical emission. Our results suggest that BCGs are primarily old galaxies with discontinuous star formation histories. The absorption equivalent widths measured in the synthetic spectra range from typically 1.5 A for Halpha, to 2 -- 5 A for Hbeta, Hgamma, and Hdelta. The implied accurate measurements of emission-line intensities will be used in a later study to constrain the star formation rates and gas-phase chemical element abundances of blue compact galaxies.Comment: 23 pages, 5 figures, accepted for publication in Astronomy and Astrophysic

    JOYS: JWST Observations of Young protoStars: Outflows and accretion in the high-mass star-forming region IRAS23385+605

    Get PDF
    Aims: The JWST program JOYS (JWST Observations of Young protoStars) aims at characterizing the physical and chemical properties of young high- and low-mass star-forming regions, in particular the unique mid-infrared diagnostics of the warmer gas and solid-state components. We present early results from the high-mass star formation region IRAS23385+6053. Methods: The JOYS program uses the MIRI MRS with its IFU to investigate a sample of high- and low-mass star-forming protostellar systems. Results: The 5 to 28mum MIRI spectrum of IRAS23385+6053 shows a plethora of features. While the general spectrum is typical for an embedded protostar, we see many atomic and molecular gas lines boosted by the higher spectral resolution and sensitivity compared to previous space missions. Furthermore, ice and dust absorption features are also present. Here, we focus on the continuum emission, outflow tracers like the H2, [FeII] and [NeII] lines as well as the potential accretion tracer Humphreys alpha HI(7--6). The short-wavelength MIRI data resolve two continuum sources A and B, where mid-infrared source A is associated with the main mm continuum peak. The combination of mid-infrared and mm data reveals a young cluster in its making. Combining the mid-infrared outflow tracer H2, [FeII] and [NeII] with mm SiO data shows a complex interplay of at least three molecular outflows driven by protostars in the forming cluster. Furthermore, the Humphreys alpha line is detected at a 3-4sigma level towards the mid-infrared sources A and B. Following Rigliaco et al. (2015), one can roughly estimate accretion luminosities and corresponding accretion rates between ~2.6x10^-6 and ~0.9x10^-4 M_sun/yr. This is discussed in the context of the observed outflow rates. Conclusions: The analysis of the MIRI MRS observations for this young high-mass star-forming region reveals connected outflow and accretion signatures.Comment: 12 pages, 9 figures, accepted for Astronomy & Astrophysics, the paper is also available at https://www2.mpia-hd.mpg.de/homes/beuther/papers.htm

    FIGS-Faint Infrared Grism Survey: Description and Data Reduction

    Get PDF
    The Faint Infrared Grism Survey (FIGS) is a deep Hubble Space Telescope (HST) WFC3/IR (Wide Field Camera 3 Infrared) slitless spectroscopic survey of four deep fields. Two fields are located in the Great Observatories Origins Deep Survey-North (GOODS-N) area and two fields are located in the Great Observatories Origins Deep Survey-South (GOODS-S) area. One of the southern fields selected is the Hubble Ultra Deep Field. Each of these four fields were observed using the WFC3/G102 grism (0.8 ÎŒm–1.15 ÎŒm continuous coverage) with a total exposure time of 40 orbits (≈100 kilo-seconds) per field. This reaches a 3σ3\sigma continuum depth of ≈26\approx 26 AB magnitudes and probes emission lines to ∌10−17 erg s−1 cm−2\sim {10}^{-17}\,\mathrm{erg}\,{{\rm{s}}}^{-1}\,{\mathrm{cm}}^{-2}. This paper details the four FIGS fields and the overall observational strategy of the project. A detailed description of the Simulation Based Extraction (SBE) method used to extract and combine over 10,000 spectra of over 2000 distinct sources brighter than mF105W=26.5{m}_{F105W}=26.5 mag is provided. High fidelity simulations of the observations is shown to significantly improve the background subtraction process, the spectral contamination estimates, and the final flux calibration. This allows for the combination of multiple spectra to produce a final high quality, deep, 1D spectra for each object in the survey

    The Brightest Young Star Clusters in NGC 5253

    Get PDF
    67 pages; 11 figures; 7 tables. Accepted for publication in the Astrophysical JournalThe nearby dwarf starburst galaxy NGC5253 hosts a number of young, massive star clusters, the two youngest of which are centrally concentrated and surrounded by thermal radio emission (the `radio nebula'). To investigate the role of these clusters in the starburst energetics, we combine new and archival Hubble Space Telescope images of NGC5253 with wavelength coverage from 1500 Ang to 1.9 micron in 13 filters. These include H-alpha, P-beta, and P-alpha, and the imaging from the Hubble Treasury Program LEGUS (Legacy Extragalactic UV Survey). The extraordinarily well-sampled spectral energy distributions enable modeling with unprecedented accuracy the ages, masses, and extinctions of the 9 optically brightest clusters (M_V < -8.8) and the two young radio nebula clusters. The clusters have ages ~1-15 Myr and masses ~1x10^4 - 2.5x10^5 M_sun. The clusters' spatial location and ages indicate that star formation has become more concentrated towards the radio nebula over the last ~15 Myr. The most massive cluster is in the radio nebula; with a mass 2.5x10^5 M_sun and an age ~1 Myr, it is 2-4 times less massive and younger than previously estimated. It is within a dust cloud with A_V~50 mag, and shows a clear nearIR excess, likely from hot dust. The second radio nebula cluster is also ~1 Myr old, confirming the extreme youth of the starburst region. These two clusters account for about half of the ionizing photon rate in the radio nebula, and will eventually supply about 2/3 of the mechanical energy in present-day shocks. Additional sources are required to supply the remaining ionizing radiation, and may include very massive stars.Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program # 13364. Support for program # 13364 was provided by NASA through a grant from the Space Telescope Science Institute. Based also on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA). This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Part of this work was conducted while D.C. was a Raymond and Beverley Sackler Distinguished Visitor at the Institute of Astronomy, University of Cambridge (UK), and an Overseas Fellow at the Churchill College (Cambridge, UK). D.C. acknowledges the kind hospitality of both the Institute and the College. A.S.E. was supported by the Taiwan, R.O.C. Ministry of Science and Technology grant MoST 102-2119-M-001-MY3. M.F. acknowledges support by the Science and Technology Facilities Council [grant number ST/L00075X/1]. D.A.G. kindly acknowledges financial support by the German Research Foundation (DFG) through grant GO 1659/3-2. E.Z. acknowledges research funding from the Swedish Research Council (project 2011-5349)
    corecore