23 research outputs found

    Interconversion between bound and free conformations of LexA orchestrates the bacterial SOS response

    Get PDF
    The bacterial SOS response is essential for the maintenance of genomes, and also modulates antibiotic resistance and controls multidrug tolerance in subpopulations of cells known as persisters. In Escherichia coli, the SOS system is controlled by the interplay of the dimeric LexA transcriptional repressor with an inducer, the active RecA filament, which forms at sites of DNA damage and activates LexA for self-cleavage. Our aim was to understand how RecA filament formation at any chromosomal location can induce the SOS system, which could explain the mechanism for precise timing of induction of SOS genes. Here, we show that stimulated self-cleavage of the LexA repressor is prevented by binding to specific DNA operator targets. Distance measurements using pulse electron paramagnetic resonance spectroscopy reveal that in unbound LexA, the DNA-binding domains sample different conformations. One of these conformations is captured when LexA is bound to operator targets and this precludes interaction by RecA. Hence, the conformational flexibility of unbound LexA is the key element in establishing a co-ordinated SOS response. We show that, while LexA exhibits diverse dissociation rates from operators, it interacts extremely rapidly with DNA target sites. Modulation of LexA activity changes the occurrence of persister cells in bacterial populations

    Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies

    Full text link
    Haydon and Guest (Haydon, D. J, and Guest, J. R. (1991) FEMS Microbiol Lett. 63, 291-295) first described the helix-turn-helix GntR family of bacterial regulators. They presented them as transcription factors sharing a similar N-terminal DNA-binding (D-b) domain, but they observed near-maximal divergence in the C-terminal effector-binding and oligomerization (E-b/O) domain. To elucidate this C-terminal heterogeneity, structural, phylogenetic, and functional analyses were performed on a family that now comprises about 270 members. Our comparative study first focused on the C-terminal E-b/O domains and next on DNA-binding domains and palindromic operator sequences, has classified the GntR members into four subfamilies that we called FadR, HutC, MocR, and YtrA. Among these subfamilies a degree of similarity of about 55% was observed throughout the entire sequence. Structure/function associations were highlighted although they were not absolutely stringent. The consensus sequences deduced for the DNA-binding domain were slightly different for each subfamily, suggesting that fusion between the D-b and E-b/O domains have occurred separately, with each subfamily having its own D-b domain ancestor. Moreover, the compilation of the known or predicted palindromic cis-acting elements has highlighted different operator sequences according to our subfamily subdivision. The observed C-terminal E-b/O domain heterogeneity was therefore reflected on the DNA-binding domain and on the cis-acting elements, suggesting the existence of a tight link between the three regions involved in the regulating process.Peer reviewe
    corecore