33 research outputs found

    Inferred Fluid Flow Behaviour in a fractured Red-bed aquifer: St Bees Sandstone Formation

    Get PDF

    Inherited biotic protection in a Neotropical pioneer plant

    Get PDF
    Chelonanthus alatus is a bat-pollinated, pioneer Gentianaceae that clusters in patches where still-standing, dried-out stems are interspersed among live individuals. Flowers bear circum-floral nectaries (CFNs) that are attractive to ants, and seed dispersal is both barochorous and anemochorous. Although, in this study, live individuals never sheltered ant colonies, dried-out hollow stems - that can remain standing for 2 years - did. Workers from species nesting in dried-out stems as well as from ground-nesting species exploited the CFNs of live C. alatus individuals in the same patches during the daytime, but were absent at night (when bat pollination occurs) on 60.5% of the plants. By visiting the CFNs, the ants indirectly protect the flowers - but not the plant foliage - from herbivorous insects. We show that this protection is provided mostly by species nesting in dried-out stems, predominantly Pseudomyrmex gracilis. That dried-out stems remain standing for years and are regularly replaced results in an opportunistic, but stable association where colonies are sheltered by one generation of dead C. alatus while the live individuals nearby, belonging to the next generation, provide them with nectar; in turn, the ants protect their flowers from herbivores. We suggest that the investment in wood by C. alatus individuals permitting stillstanding, dried-out stems to shelter ant colonies constitutes an extended phenotype because foraging workers protect the flowers of live individuals in the same patch. Also, through this process these dried-out stems indirectly favor the reproduction (and so the fitness) of the next generation including both their own offspring and that of their siblings, alladding up to a potential case of inclusive fitness in plants

    Characterization of a fluvial aquifer at a range of depths and scales: the Triassic St Bees Sandstone Formation, Cumbria, UK

    No full text
    Fluvial sedimentary successions represent porous media that host groundwater and geothermal resources. Additionally, they overlie crystalline rocks hosting nuclear waste repositories in rift settings. The permeability characteristics of an arenaceous fluvial succession, the Triassic St Bees Sandstone Formation in England (UK), are described, from core-plug to well-test scale up to ~1 km depth. Within such lithified successions, dissolution associated with the circulation of meteoric water results in increased permeability (K~10−1–100 m/day) to depths of at least 150 m below ground level (BGL) in aquifer systems that are subject to rapid groundwater circulation. Thus, contaminant transport is likely to occur at relatively high rates. In a deeper investigation (> 150 m depth), where the aquifer has not been subjected to rapid groundwater circulation, well-test-scale hydraulic conductivity is lower, decreasing from K~10−2 m/day at 150–400 m BGL to 10−3 m/day down-dip at ~1 km BGL, where the pore fluid is hypersaline. Here, pore-scale permeability becomes progressively dominant with increasing lithostatic load. Notably, this work investigates a sandstone aquifer of fluvial origin at investigation depths consistent with highly enthalpy geothermal reservoirs (~0.7–1.1 km). At such depths, intergranular flow dominates in unfaulted areas with only minor contribution by bedding plane fractures. However, extensional faults represent preferential flow pathways, due to presence of high connective open fractures. Therefore, such faults may (1) drive nuclear waste contaminants towards the highly permeable shallow (< 150 m BGL) zone of the aquifer, and (2) influence fluid recovery in geothermal fields

    Convergent Flow in Unsaturated Fractured Chalk

    No full text
    The Cretaceous Chalk in Northern Europe and other similar fractured rock aquifers frequently have very thick unsaturated (vadose) zones which control both their hydraulic response to rainfall and the extent to which pollutants are delayed or attenuated before reaching groundwater. Understanding their hydraulic responses is a pre-requisite for prediction of future trends in groundwater recharge and quality. Accurate characterization of these responses remain elusive because of difficulties in both obtaining in-situ measurements and in devising appropriate conceptual models of flow processes in unsaturated fractured rock. In this study we addressed both issues by simultaneously monitoring soil water dynamics through continuously logged matric potential and moisture content and measuring discharge into a subsurface tunnel at up to 45 m depth within the unsaturated zone of Cretaceous Chalk in Northern England. Winter drainage fluxes from the base of the soil zone were estimated using the HYDRUS code for one-dimensional variably saturated media. Comparison of soil zone drainage representing the hydraulic input into the Chalk unsaturated zone with tunnel discharge provides insights into the flow dynamics of the unsaturated zone. The relative magnitudes of the soil drainage and deeper unsaturated zone discharge show that flow pathways converge resulting in increased flow focussing with depth in the unsaturated zone. The observed short lag times between the soil surface and the inflow sites in the subsurface tunnel suggest that contaminants from the surface could rapidly reach the water table through thick unsaturated zones within the Chalk

    Palaeoenvironment of braided fluvial systems in different tectonic realms of the Triassic Sherwood Sandstone Group, UK

    No full text
    Fluvial successions comprising the fills of sedimentary basins occur in a variety of tectonic realms related to extensional, compressional and strike-slip settings, as well as on slowly subsiding, passive basin margins. A major rifting phase affected NW Europe during the Triassic and resulted in the generation of numerous sedimentary basins. In the UK, much of the fill of these basins is represented by fluvial and aeolian successions of the Sherwood Sandstone Group. Additionally, regions that experienced slow rates of Mesozoic subsidence unrelated to Triassic rifting also acted as sites of accumulation of the Sherwood Sandstone Group, one well-exposed example being the eastern England Shelf. The fluvial depositional architecture of deposits of the Sherwood Sandstone Group of the eastern England Shelf (a shelf-edge basin) is compared with similar fluvial deposits of the St Bees Sandstone Formation, eastern Irish Sea Basin (a half-graben). The two studied successions represent the preserved deposits of braided fluvial systems that were influenced by common allogenic factors (climate, sediment source, delivery style); differences in preserved sedimentary style principally reflect their different tectonics settings. Analysis of lithofacies and architectural elements demonstrates that both studied successions are characterized by amalgamated channel-fill elements that are recorded predominantly by downstream-accreting sandy barforms. The different tectonic settings in which the two braided-fluvial systems accumulated exerted a dominant control on preserved sedimentary style and long-term preservation potential. On the eastern England Shelf, the vertical stacking of pebbly units and the general absence of fine-grained units reflect a slow rate of sediment accommodation generation (18–19.4 m/Myr). In this shelf-edge basin, successive fluvial cycles repeatedly reworked the uppermost parts of earlier fluvial deposits such that only the lowermost channel lags tend to be preserved. By contrast, in the eastern Irish Sea Basin of west Cumbria, the rate of sediment accommodation generation was substantially greater (119 m/Myr) such that space was available to preserve complete fluvial cycles, including silty drape units that cap the channelized deposits
    corecore