283 research outputs found
A new Apicomplexa-specific protein kinase family : multiple members in Plasmodium falciparum, all with an export signature
BACKGROUND: Malaria caused by protozoan parasites of the genus Plasmodium spp. is a major health burden in tropical countries. The development of new control tools, including vaccines and drugs, is urgently needed. The availability of genome sequences from several malaria parasite species provides a basis on which to identify new potential intervention targets. Database mining for orthologs to the Plasmodium falciparum trophozoite protein R45, a vaccine candidate, led us identify a new gene family. RESULTS: Orthologs to the P. falciparum trophozoite protein R45 were detected exclusively in protozoan parasites of the phylum Apicomplexa, including several Plasmodium spp., Toxoplasma gondii and Cryptosporidium parvum. All family members are hybrid genes with a conserved C-terminal protein kinase domain of a novel type, recently called FIKK kinase, associated with a non conserved N-terminal region without any known functional signature. While a single copy gene was detected in most species, considerable gene expansion was observed in P. falciparum and its closest phylogenic relative P. reichenowi, with 20 and six copies, respectively, each with a distinct N-terminal domain. Based on full length protein sequence, pairs of orthologs were observed in closely related species, such as P. berghei and P.y. yoelii, P. vivax and P. knowlesi, or P. reichenowi and P. falciparum. All 20 P. falciparum paralogs possess a canonical Plasmodium export element downstream of a signal / anchor sequence required for exportation outside the parasitophorous vacuole. This is consistent with the reported association of the trophozoite protein R45, the only paralog characterised to date, with the infected red blood cell membrane. Interestingly, most genes are located in the subtelomeric region of chromosomes, in association with other multigene families contributing to the remodelling of the infected red blood cell membrane, in particular the ring erythrocyte surface antigen multigene family. CONCLUSION: This Apicomplexan-specific gene family was called R45-FIKK kinase. The family hallmark is a kinase domain with unusual characteristics, raising the possibility of designing drug or vaccine strategies targeting this domain. The characteristics of the P. falciparum family suggest a role in remodelling the infected cell and as such possibly contribute to the particular virulence of this species
Resistance to Dihydroartemisinin
International audienc
CyProQuant-PCR: a real time RT-PCR technique for profiling human cytokines, based on external RNA standards, readily automatable for clinical use
BACKGROUND: Real-time PCR is becoming a common tool for detecting and quantifying expression profiling of selected genes. Cytokines mRNA quantification is widely used in immunological research to dissect the early steps of immune responses or pathophysiological pathways. It is also growing to be of clinical relevancy to immuno-monitoring and evaluation of the disease status of patients. The techniques currently used for "absolute quantification" of cytokine mRNA are based on a DNA standard curve and do not take into account the critical impact of RT efficiency. RESULTS: To overcome this pitfall, we designed a strategy using external RNA as standard in the RT-PCR. Use of synthetic RNA standards, by comparison with the corresponding DNA standard, showed significant variations in the yield of retro-transcription depending the target amplified and the experiment. We then developed primers to be used under one single experimental condition for the specific amplification of human IL-1β, IL-4, IL-10, IL-12p40, IL-13, IL-15, IL-18, IFN-γ, MIF, TGF-β1 and TNF-α mRNA. We showed that the beta-2 microglobulin (β2-MG) gene was suitable for data normalisation since the level of β2-MG transcripts in naïve PBMC varied less than 5 times between individuals and was not affected by LPS or PHA stimulation. The technique, we named CyProQuant-PCR (Cytokine Profiling Quantitative PCR) was validated using a kinetic measurement of cytokine transcripts under in vitro stimulation of human PBMC by lipopolysaccharide (LPS) or Staphylococcus aureus strain Cowan (SAC). Results obtained show that CyProQuant-PCR is powerful enough to precociously detect slight cytokine induction. Finally, having demonstrated the reproducibility of the method, it was applied to malaria patients and asymptomatic controls for the quantification of TGF-β1 transcripts and showed an increased capacity of cells from malaria patients to accumulate TGF-β1 mRNA in response to LPS. CONCLUSION: The real-time RT-PCR technique based on a RNA standard curve, CyProQuant-PCR, outlined here, allows for a genuine absolute quantification and a simultaneous analysis of a large panel of human cytokine mRNA. It represents a potent and attractive tool for immunomonitoring, lending itself readily to automation and with a high throughput. This opens the possibility of an easy and reliable cytokine profiling for clinical applications
Molecular analysis of two local falciparum malaria outbreaks on the French Guiana coast confirms the msp1 B-K1/varD genotype association with severe malaria
BACKGROUND: Plasmodium falciparum outbreaks can occur in the coastal area of French Guiana, where the population is essentially non-immune. Two sporadic outbreaks were observed, including one with severe malaria cases. To characterize these outbreaks and verify previous observations of specific genotype characteristics in severe malaria in this area, all cases from each outbreak were studied. METHODS: P. falciparum genotypes for six genetic loci were determined by PCR amplification from peripheral blood parasites. The msp1/block2 and msp2 genotypes were determined by DNA sequencing. Microsatellite and varD genotyping was based on size polymorphism and locus-specific amplification. RESULTS: The outbreak including severe malaria cases was associated with a single genotype. The other mild malaria outbreak was due to at least five distinct genotypes. CONCLUSION: Two distinct types of outbreak occured despite systematic and sustained deployement of malaria control measures, indicating a need for reinforced vigilance. The varD/B-K1 msp1 linkage and its association with severe malaria in this area was confirmed
The humoral response to Plasmodium falciparum VarO rosetting variant and its association with protection against malaria in Beninese children
<p>Abstract</p> <p>Background</p> <p>The capacity of <it>Plasmodium falciparum</it>-infected erythrocytes to bind uninfected erythrocytes (rosetting) is associated with severe malaria in African children. Rosetting is mediated by a subset of the variant surface antigens PfEMP1 targeted by protective antibody responses. Analysis of the response to rosette-forming parasites and their PfEMP1 adhesive domains is essential for understanding the acquisition of protection against severe malaria. To this end, the antibody response to a rosetting variant was analysed in children recruited with severe or uncomplicated malaria or asymptomatic <it>P. falciparum </it>infection.</p> <p>Methods</p> <p>Serum was collected from Beninese children with severe malaria, uncomplicated malaria or <it>P. falciparum </it>asymptomatic infection (N = 65, 37 and 52, respectively) and from immune adults (N = 30) living in the area. Infected erythrocyte surface-reactive IgG, rosette disrupting antibodies and IgG to the parasite crude extract were analysed using the single variant Palo Alto VarO-infected line. IgG, IgG1 and IgG3 to PfEMP1-varO-derived NTS-DBL1α<sub>1</sub>, CIDRγ and DBL2βC2 recombinant domains were analysed by ELISA. Antibody responses were compared in the clinical groups. Stability of the response was studied using a blood sampling collected 14 months later from asymptomatic children.</p> <p>Results</p> <p>Seroprevalence of erythrocyte surface-reactive IgG was high in adults (100%) and asymptomatic children (92.3%) but low in children with severe or uncomplicated malaria (26.1% and 37.8%, respectively). The IgG, IgG1 and IgG3 antibody responses to the varO-derived PfEMP1 domains were significantly higher in asymptomatic children than in children with clinical malaria in a multivariate analysis correcting for age and parasite density at enrolment. They were essentially stable, although levels tended to decrease with time. VarO-surface reactivity correlated positively with IgG reactivity to the rosetting domain varO-NTS-DBL1α<sub>1</sub>. None of the children sera, including those with surface-reactive antibodies possessed anti-VarO-rosetting activity, and few adults had rosette-disrupting antibodies.</p> <p>Conclusions</p> <p>Children with severe and uncomplicated malaria had similar responses. The higher prevalence and level of VarO-reactive antibodies in asymptomatic children compared to children with malaria is consistent with a protective role for anti-VarO antibodies against clinical falciparum malaria. The mechanism of such protection seems independent of rosette-disruption, suggesting that the cytophilic properties of antibodies come into play.</p
Dynamic RNA profiling in Plasmodium falciparum synchronized blood stages exposed to lethal doses of artesunate
<p>Abstract</p> <p>Background</p> <p>Translation of the genome sequence of <it>Plasmodium sp</it>. into biologically relevant information relies on high through-put genomics technology which includes transcriptome analysis. However, few studies to date have used this powerful approach to explore transcriptome alterations of <it>P. falciparum </it>parasites exposed to antimalarial drugs.</p> <p>Results</p> <p>The rapid action of artesunate allowed us to study dynamic changes of the parasite transcriptome in synchronous parasite cultures exposed to the drug for 90 minutes and 3 hours. Developmentally regulated genes were filtered out, leaving 398 genes which presented altered transcript levels reflecting drug-exposure. Few genes related to metabolic pathways, most encoded chaperones, transporters, kinases, Zn-finger proteins, transcription activating proteins, proteins involved in proteasome degradation, in oxidative stress and in cell cycle regulation. A positive bias was observed for over-expressed genes presenting a subtelomeric location, allelic polymorphism and encoding proteins with potential export sequences, which often belonged to subtelomeric multi-gene families. This pointed to the mobilization of processes shaping the interface between the parasite and its environment. In parallel, pathways were engaged which could lead to parasite death, such as interference with purine/pyrimidine metabolism, the mitochondrial electron transport chain, proteasome-dependent protein degradation or the integrity of the food vacuole.</p> <p>Conclusion</p> <p>The high proportion of over-expressed genes encoding proteins exported from the parasite highlight the importance of extra-parasitic compartments as fields for exploration in drug research which, to date, has mostly focused on the parasite itself rather than on its intra and extra erythrocytic environment. Further work is needed to clarify which transcriptome alterations observed reflect a specific response to overcome artesunate toxicity or more general perturbations on the path to cellular death.</p
Large-scale malaria survey in Cambodia: Novel insights on species distribution and risk factors
BACKGROUND: In Cambodia, estimates of the malaria burden rely on a public health information system that does not record cases occurring among remote populations, neither malaria cases treated in the private sector nor asymptomatic carriers. A global estimate of the current malaria situation and associated risk factors is, therefore, still lacking. METHODS: A large cross-sectional survey was carried out in three areas of multidrug resistant malaria in Cambodia, enrolling 11,652 individuals. Fever and splenomegaly were recorded. Malaria prevalence, parasite densities and spatial distribution of infection were determined to identify parasitological profiles and the associated risk factors useful for improving malaria control programmes in the country. RESULTS: Malaria prevalence was 3.0%, 7.0% and 12.3% in Sampovloun, Koh Kong and Preah Vihear areas. Prevalences and Plasmodium species were heterogeneously distributed, with higher Plasmodium vivax rates in areas of low transmission. Malaria-attributable fevers accounted only for 10–33% of malaria cases, and 23–33% of parasite carriers were febrile. Multivariate multilevel regression analysis identified adults and males, mostly involved in forest activities, as high risk groups in Sampovloun, with additional risks for children in forest-fringe villages in the other areas along with an increased risk with distance from health facilities. CONCLUSION: These observations point to a more complex malaria situation than suspected from official reports. A large asymptomatic reservoir was observed. The rates of P. vivax infections were higher than recorded in several areas. In remote areas, malaria prevalence was high. This indicates that additional health facilities should be implemented in areas at higher risk, such as remote rural and forested parts of the country, which are not adequately served by health services. Precise malaria risk mapping all over the country is needed to assess the extensive geographical heterogeneity of malaria endemicity and risk populations, so that current malaria control measures can be reinforced accordingly
Plasmodium falciparum parasite population structure and gene flow associated to anti-malarial drugs resistance in Cambodia
Background: Western Cambodia is recognized as the epicentre of emergence of Plasmodium falciparum multi-drug resistance. The emergence of artemisinin resistance has been observed in this area since 2008–2009 and molecular signatures associated to artemisinin resistance have been characterized in k13 gene. At present, one of the major threats faced, is the possible spread of Asian artemisinin resistant parasites over the world threatening millions of people and jeopardizing malaria elimination programme efforts. To anticipate the diffusion of artemisinin resistance, the identification of the P. falciparum population structure and the gene flow among the parasite population in Cambodia are essential. Methods: To this end, a mid-throughput PCR-LDR-FMA approach based on LUMINEX technology was developed to screen for genetic barcode in 533 blood samples collected in 2010–2011 from 16 health centres in malaria endemics areas in Cambodia. Results: Based on successful typing of 282 samples, subpopulations were characterized along the borders of the country. Each 11-loci barcode provides evidence supporting allele distribution gradient related to subpopulations and gene flow. The 11-loci barcode successfully identifies recently emerging parasite subpopulations in western Cambodia that are associated with the C580Y dominant allele for artemisinin resistance in k13 gene. A subpopulation was identified in northern Cambodia that was associated to artemisinin (R539T resistant allele of k13 gene) and mefloquine resistance. Conclusions: The gene flow between these subpopulations might have driven the spread of artemisinin resistance over Cambodia
Chronic infection during placental malaria is associated with up-regulation of cycloxygenase-2
<p>Abstract</p> <p>Background</p> <p>Placental malaria (PM) is associated with poor foetal development, but the pathophysiological processes involved are poorly understood. Cyclooxygenase (COX) and lipoxygenase (LOX) which convert fatty acids to prostaglandins and leukotrienes, play important roles in pregnancy and foetal development. COX-2, currently targeted by specific drugs, plays a dual role as it associates with both pre-eclampsia pathology and recovery during infection. The role of COX during PM was questioned by quantifying at delivery COX-1, COX-2, 15-LOX, and IL-10 expression in two groups of malaria infected and uninfected placenta.</p> <p>Methods</p> <p>Placental biopsies were collected at delivery for mRNA isolation and quantification, using real time PCR.</p> <p>Results</p> <p>COX-2 and IL-10 mRNAs increased mainly during chronic infections (nine- and five-times, respectively), whereas COX-1 transcripts remained constant. COX-2 over-expression was associated with a higher birth weight of the baby, but with a lower rate of haemoglobin of the mother. It was associated with a macrophage infiltration of the placenta and with a low haemozoin infiltration. In the opposite way, placental infection was associated with lower expression of 15-LOX mRNA. A high degree of haemozoin deposition correlates with low birth weight and decreased expression of COX-2.</p> <p>Conclusion</p> <p>These data provide evidence that COX-2 and IL-10 are highly induced during chronic infection of the placenta, but were not associated with preterm delivery or low birth weight. The data support the involvement of COX-2 in the recovery phase of the placental infection.</p
Invasion of Africa by a single pfcrt allele of South East Asian type
BACKGROUND: Because of its dramatic public health impact, Plasmodium falciparum resistance to chloroquine (CQ) has been documented early on. Chloroquine-resistance (CQR) emerged in the late 1950's independently in South East Asia and South America and progressively spread over all malaria areas. CQR was reported in East Africa in the 1970's, and has since invaded the African continent. Many questions remain about the actual selection and spreading process of CQR parasites, and about the evolution of the ancestral mutant gene(s) during spreading. METHODS: Eleven clinical isolates of P. falciparum from Cambodia and 238 from Africa (Senegal, Ivory Coast, Bukina Faso, Mali, Guinea, Togo, Benin, Niger, Congo, Madagascar, Comoros Islands, Tanzania, Kenya, Mozambique, Cameroun, Gabon) were collected during active case detection surveys carried out between 1996 and 2001. Parasite DNA was extracted from frozen blood aliquots and amplification of the gene pfcrt exon 2 (codon 72–76), exon 4 and intron 4 (codon 220 and microsatellite marker) were performed. All fragments were sequenced. RESULTS: 124 isolates with a sensitive (c76/c220:CVMNK/A) haplotype and 125 isolates with a resistant c76/c220:CVIET/S haplotype were found. The microsatellite showed 17 different types in the isolates carrying the c76/c220:CVMNK/A haplotype while all 125 isolates with a CVIET/S haplotype but two had a single microsatellite type, namely (TAAA)3(TA)15, whatever the location or time of collection. CONCLUSION: Those results are consistent with the migration of a single ancestral pfcrt CQR allele from Asia to Africa. This is related to the importance of PFCRT in the fitness of P. falciparum point out this protein as a potential target for developments of new antimalarial drugs
- …