89 research outputs found

    Condensate-removal device for heat exchangers

    Get PDF
    Device comprises array of perforated tubes manifolded together and connected to a vacuum suction device. Vacuum applied to these tubes pulls mixture of condensate and effluent gas through perforations and along length of tubes to discharge device. Discharge device may be a separator which separates water vapor from effluent air and allows recirculation of both of them

    Condensate removal device for heat exchanger

    Get PDF
    A set of perforated tubes disposed at the gas output side of a heat exchanger, in a position not to affect the rate of flow of the air or other gas is described. The tubes are connected to a common manifold which is connected to a sucking device. Where it is necessary to conserve and recirculate the air sucked through the tubes, the output of the manifold is run through a separator to remove the condensate from the gas. The perforations in the slurper tubes are small, lying in the range of 0.010 inch to 0.100 inch. The tubes are disposed in contact with the surfaces of the heat exchanger on which the condensate is precipitated, whether fins or plates, so that the water may be directed to the tube openings by means of surface effects, together with the assistance of the air flow. Only about 5 percent of the air output need be thus diverted, and it effectively removes virtually all of the condensate

    Toxicity of thermal degradation products of spacecraft materials

    Get PDF
    Three polymeric materials were evaluated for relative toxicity of their pyrolysis products to rats by inhalation: Y-7683 (LS 200), Y-7684 (Vonar 3 on Fiberglass), and Y-7685 (Vonar 3 on N W Polyester). Criteria employed for assessing relative toxicity were (1) lethality from in-chamber pyrolysis, (2) lethality from an outside-of-chamber pyrolysis MSTL Procedure, and (3) disruption of trained rats' shock-avoidance performance during sub-lethal exposures to in-chamber pyrolysis of the materials

    Competition between Exceptionally Long-Range Alkyl Sidechain Ordering and Backbone Ordering in Semiconducting Polymers and Its Impact on Electronic and Optoelectronic Properties

    Get PDF
    Intra‐ and intermolecular ordering greatly impacts the electronic and optoelectronic properties of semiconducting polymers. The interrelationship between ordering of alkyl sidechains and conjugated backbones has yet to be fully detailed, despite much prior effort. Here, the discovery of a highly ordered alkyl sidechain phase in six representative semiconducting polymers, determined from distinct spectroscopic and diffraction signatures, is reported. The sidechain ordering exhibits unusually large coherence lengths (≥70 nm), induces torsional/twisting backbone disorder, and results in a vertically multilayered nanostructure with ordered sidechain layers alternating with disordered backbone layers. Calorimetry and in situ variable temperature scattering measurements in a model system poly{4‐(5‐(4,8‐bis(3‐butylnonyl)‐6‐methylbenzo[1,2‐b:4,5‐b′]dithiophen‐2‐yl)thiophen‐2‐yl)‐2‐(2‐butyloctyl)‐5,6‐difluoro‐7‐(5‐methylthiophen‐2‐yl)‐2H‐benzo[d][1,2,3]triazole} (PBnDT‐FTAZ) clearly delineate this competition of ordering that prevents simultaneous long‐range order of both moieties. The long‐range sidechain ordering can be exploited as a transient state to fabricate PBnDT‐FTAZ films with an atypical edge‐on texture and 2.5× improved field‐effect transistor mobility. The observed influence of ordering between the moieties implies that improved molecular design can produce synergistic rather than destructive ordering effects. Given the large sidechain coherence lengths observed, such synergistic ordering should greatly improve the coherence length of backbone ordering and thereby improve electronic and optoelectronic properties such as charge transport and exciton diffusion lengths

    MINERvA neutrino detector response measured with test beam data

    Get PDF
    The MINERvA collaboration operated a scaled-down replica of the solid scintillator tracking and sampling calorimeter regions of the MINERvA detector in a hadron test beam at the Fermilab Test Beam Facility. This article reports measurements with samples of protons, pions, and electrons from 0.35 to 2.0 GeV/c momentum. The calorimetric response to protons, pions, and electrons are obtained from these data. A measurement of the parameter in Birks' law and an estimate of the tracking efficiency are extracted from the proton sample. Overall the data are well described by a Geant4-based Monte Carlo simulation of the detector and particle interactions with agreements better than 4%, though some features of the data are not precisely modeled. These measurements are used to tune the MINERvA detector simulation and evaluate systematic uncertainties in support of the MINERvA neutrino cross section measurement program.Comment: as accepted by NIM

    Detecting ancient codispersals and host shifts by double dating of host and parasite phylogenies: Application in proctophyllodid feather mites associated with passerine birds

    Full text link
    Inferring cophylogeographic events requires matching the timing of these events on both host and symbiont (e.g., parasites) phylogenies because divergences of hosts and their symbionts may not temporally coincide, and host switches may occur. We investigate a large radiation of birds (Passeriformes) and their permanent symbionts, the proctophyllodid feather mites (117 species from 116 bird species; six genes, 11,468 nt aligned) using two time‐calibration strategies for mites: fossils only and host phylogeography only. Out of 10 putative cophylogeographic events 4 agree in timing for both symbiont and host events being synchronous co‐origins or codispersals; three were based on host shifts, but agree in timing being very close to the origin of modern hosts; two disagree; and one large basal mite split was seemingly independent from host phylogeography. Among these events was an ancient (21–25.3 Mya), synchronous codispersal from the Old World leading to the origin and diversifications of New World emberizoid passerids and their mites, the thraupis + quadratus species groups of Proctophyllodes. Our framework offers a more robust detection of host and symbiont cophylogeographic events (as compared to host‐symbiont reconciliation analysis and using host phylogeography for time‐calibration) and provides independent data for testing alternative hypotheses on timing of host diversification and dispersal.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/1/evo13309-sup-0003-figureS3.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/2/evo13309.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/3/evo13309-sup-0006-figureS6.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/4/evo13309_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/5/evo13309-sup-0009-figureS9.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/6/evo13309-sup-0005-figureS5.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/7/evo13309-sup-0004-figureS4.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/8/evo13309-sup-0002-figureS2.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/9/evo13309-sup-0008-figureS8.pd

    PDXK mutations cause polyneuropathy responsive to pyridoxal 5'-phosphate supplementation.

    Get PDF
    OBJECTIVE: To identify disease-causing variants in autosomal recessive axonal polyneuropathy with optic atrophy and provide targeted replacement therapy. METHODS: We performed genome-wide sequencing, homozygosity mapping, and segregation analysis for novel disease-causing gene discovery. We used circular dichroism to show secondary structure changes and isothermal titration calorimetry to investigate the impact of variants on adenosine triphosphate (ATP) binding. Pathogenicity was further supported by enzymatic assays and mass spectroscopy on recombinant protein, patient-derived fibroblasts, plasma, and erythrocytes. Response to supplementation was measured with clinical validated rating scales, electrophysiology, and biochemical quantification. RESULTS: We identified biallelic mutations in PDXK in 5 individuals from 2 unrelated families with primary axonal polyneuropathy and optic atrophy. The natural history of this disorder suggests that untreated, affected individuals become wheelchair-bound and blind. We identified conformational rearrangement in the mutant enzyme around the ATP-binding pocket. Low PDXK ATP binding resulted in decreased erythrocyte PDXK activity and low pyridoxal 5'-phosphate (PLP) concentrations. We rescued the clinical and biochemical profile with PLP supplementation in 1 family, improvement in power, pain, and fatigue contributing to patients regaining their ability to walk independently during the first year of PLP normalization. INTERPRETATION: We show that mutations in PDXK cause autosomal recessive axonal peripheral polyneuropathy leading to disease via reduced PDXK enzymatic activity and low PLP. We show that the biochemical profile can be rescued with PLP supplementation associated with clinical improvement. As B6 is a cofactor in diverse essential biological pathways, our findings may have direct implications for neuropathies of unknown etiology characterized by reduced PLP levels. ANN NEUROL 2019;86:225-240

    Exercise and functional foods

    Get PDF
    Appropriate nutrition is an essential prerequisite for effective improvement of athletic performance, conditioning, recovery from fatigue after exercise, and avoidance of injury. Nutritional supplements containing carbohydrates, proteins, vitamins, and minerals have been widely used in various sporting fields to provide a boost to the recommended daily allowance. In addition, several natural food components have been found to show physiological effects, and some of them are considered to be useful for promoting exercise performance or for prevention of injury. However, these foods should only be used when there is clear scientific evidence and with understanding of the physiological changes caused by exercise. This article describes various "functional foods" that have been reported to be effective for improving exercise performance or health promotion, along with the relevant physiological changes that occur during exercise

    Linking Symptom Inventories using Semantic Textual Similarity

    Full text link
    An extensive library of symptom inventories has been developed over time to measure clinical symptoms, but this variety has led to several long standing issues. Most notably, results drawn from different settings and studies are not comparable, which limits reproducibility. Here, we present an artificial intelligence (AI) approach using semantic textual similarity (STS) to link symptoms and scores across previously incongruous symptom inventories. We tested the ability of four pre-trained STS models to screen thousands of symptom description pairs for related content - a challenging task typically requiring expert panels. Models were tasked to predict symptom severity across four different inventories for 6,607 participants drawn from 16 international data sources. The STS approach achieved 74.8% accuracy across five tasks, outperforming other models tested. This work suggests that incorporating contextual, semantic information can assist expert decision-making processes, yielding gains for both general and disease-specific clinical assessment
    corecore