62 research outputs found

    Non-O ABO blood group genotypes differ in their associations with Plasmodium falciparum rosetting and severe malaria

    Get PDF
    Blood group O is associated with protection against severe malaria and reduced size and stability of P. falciparum-host red blood cell (RBC) rosettes compared to non-O blood groups. Whether the non-O blood groups encoded by the specific ABO genotypes AO, BO, AA, BB and AB differ in their associations with severe malaria and rosetting is unknown. The A and B antigens are host RBC receptors for rosetting, hence we hypothesized that the higher levels of A and/or B antigen on RBCs from AA, BB and AB genotypes compared to AO/BO genotypes could lead to larger rosettes, increased microvascular obstruction and higher risk of malaria pathology. We used a case-control study of Kenyan children and in vitro adhesion assays to test the hypothesis that “double dose” non-O genotypes (AA, BB, AB) are associated with increased risk of severe malaria and larger rosettes than “single dose” heterozygotes (AO, BO). In the case-control study, compared to OO, the double dose genotypes consistently had higher odds ratios (OR) for severe malaria than single dose genotypes, with AB (OR 1.93) and AO (OR 1.27) showing most marked difference (p = 0.02, Wald test). In vitro experiments with blood group A-preferring P. falciparum parasites showed that significantly larger rosettes were formed with AA and AB host RBCs compared to OO, whereas AO and BO genotypes rosettes were indistinguishable from OO. Overall, the data show that ABO genotype influences P. falciparum rosetting and support the hypothesis that double dose non-O genotypes confer a greater risk of severe malaria than AO/BO heterozygosity

    Epidemiology of Subpatent Plasmodium Falciparum Infection: Implications for Detection of Hotspots with Imperfect Diagnostics.

    Get PDF
    At the local level, malaria transmission clusters in hotspots, which may be a group of households that experience higher than average exposure to infectious mosquitoes. Active case detection often relying on rapid diagnostic tests for mass screen and treat campaigns has been proposed as a method to detect and treat individuals in hotspots. Data from a cross-sectional survey conducted in north-western Tanzania were used to examine the spatial distribution of Plasmodium falciparum and the relationship between household exposure and parasite density. Dried blood spots were collected from consenting individuals from four villages during a survey conducted in 2010. These were analysed by PCR for the presence of P. falciparum, with the parasite density of positive samples being estimated by quantitative PCR. Household exposure was estimated using the distance-weighted PCR prevalence of infection. Parasite density simulations were used to estimate the proportion of infections that would be treated using a screen and treat approach with rapid diagnostic tests (RDT) compared to targeted mass drug administration (tMDA) and Mass Drug Administration (MDA). Polymerase chain reaction PCR analysis revealed that of the 3,057 blood samples analysed, 1,078 were positive. Mean distance-weighted PCR prevalence per household was 34.5%. Parasite density was negatively associated with transmission intensity with the odds of an infection being subpatent increasing with household exposure (OR 1.09 per 1% increase in exposure). Parasite density was also related to age, being highest in children five to ten years old and lowest in those > 40 years. Simulations of different tMDA strategies showed that treating all individuals in households where RDT prevalence was above 20% increased the number of infections that would have been treated from 43 to 55%. However, even with this strategy, 45% of infections remained untreated. The negative relationship between household exposure and parasite density suggests that DNA-based detection of parasites is needed to provide adequate sensitivity in hotspots. Targeting MDA only to households with RDT-positive individuals may allow a larger fraction of infections to be treated. These results suggest that community-wide MDA, instead of screen and treat strategies, may be needed to successfully treat the asymptomatic, subpatent parasite reservoir and reduce transmission in similar settings

    Comparison of PfHRP-2/pLDH ELISA, qPCR and microscopy for the detection of Plasmodium events and prediction of sick visits during a malaria vaccine study.

    Get PDF
    BACKGROUND: Compared to expert malaria microscopy, malaria biomarkers such as Plasmodium falciparum histidine rich protein-2 (PfHRP-2), and PCR provide superior analytical sensitivity and specificity for quantifying malaria parasites infections. This study reports on parasite prevalence, sick visits parasite density and species composition by different diagnostic methods during a phase-I malaria vaccine trial. METHODS: Blood samples for microscopy, PfHRP-2 and Plasmodium lactate dehydrogenase (pLDH) ELISAs and real time quantitative PCR (qPCR) were collected during scheduled (n = 298) or sick visits (n = 38) from 30 adults participating in a 112-day vaccine trial. The four methods were used to assess parasite prevalence, as well as parasite density over a 42-day period for patients with clinical episodes. RESULTS: During scheduled visits, qPCR (39.9%, N = 119) and PfHRP-2 ELISA (36.9%, N = 110) detected higher parasite prevalence than pLDH ELISA (16.8%, N = 50) and all methods were more sensitive than microscopy (13.4%, N = 40). All microscopically detected infections contained P. falciparum, as mono-infections (95%) or with P. malariae (5%). By qPCR, 102/119 infections were speciated. P. falciparum predominated either as monoinfections (71.6%), with P. malariae (8.8%), P. ovale (4.9%) or both (3.9%). P. malariae (6.9%) and P. ovale (1.0%) also occurred as co-infections (2.9%). As expected, higher prevalences were detected during sick visits, with prevalences of 65.8% (qPCR), 60.5% (PfHRP-2 ELISA), 21.1% (pLDH ELISA) and 31.6% (microscopy). PfHRP-2 showed biomass build-up that climaxed (1813Âą3410 ng/mL SD) at clinical episodes. CONCLUSION: PfHRP-2 ELISA and qPCR may be needed for accurately quantifying the malaria parasite burden. In addition, qPCR improves parasite speciation, whilst PfHRP-2 ELISA is a potential predictor for clinical disease caused by P. falciparum. TRIAL REGISTRATION: ClinicalTrials.gov NCT00666380

    Use and limitations of malaria rapid diagnostic testing by community health workers in war-torn Democratic Republic of Congo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate and practical malaria diagnostics, such as immunochromatographic rapid diagnostic tests (RDTs), have the potential to avert unnecessary treatments and save lives. Volunteer community health workers (CHWs) represent a potentially valuable human resource for expanding this technology to where it is most needed, remote rural communities in sub-Saharan Africa with limited health facilities and personnel. This study reports on a training programme for CHWs to incorporate RDTs into their management strategy for febrile children in the Democratic Republic of Congo, a tropical African setting ravaged by human conflict.</p> <p>Methods</p> <p>Prospective cohort study, satisfaction questionnaire and decision analysis.</p> <p>Results</p> <p>Twelve CHWs were trained to safely and accurately perform and interpret RDTs, then successfully implemented rapid diagnostic testing in their remote community in a cohort of 357 febrile children. CHWs were uniformly positive in evaluating RDTs for their utility and ease of use. However, high malaria prevalence in this cohort (93% by RDTs, 88% by light microscopy) limited the cost-effectiveness of RDTs compared to presumptive treatment of all febrile children, as evidenced by findings from a simplified decision analysis.</p> <p>Conclusions</p> <p>CHWs can safely and effectively use RDTs in their management of febrile children; however, cost-effectiveness of RDTs is limited in zones of high malaria prevalence.</p

    Comparison of diagnostic methods for the detection and quantification of the four sympatric Plasmodium species in field samples from Papua New Guinea

    Get PDF
    Accurate diagnosis of Plasmodium infections is essential for malaria morbidity and mortality reduction in tropical areas. Despite great advantages of light microscopy (LM) for malaria diagnosis, its limited sensitivity is a critical shortfall for epidemiological studies. Robust molecular diagnostics tools are thus needed.; The present study describes the development of a duplex quantitative real time PCR (qPCR) assay, which specifically detects and quantifies the four human Plasmodium species. Performance of this method was compared to PCR-ligase detection reaction-fluorescent microsphere assay (PCR_LDR_FMA), nested PCR (nPCR) and LM, using field samples collected from 452 children one to five years of age from the Sepik area in Papua New Guinea. Agreement between diagnostic methods was calcualted using kappa statistics.; The agreement of qPCR with other molecular diagnostic methods was substantial for the detection of P. falciparum, but was moderate for the detection of P. vivax, P. malariae and P. ovale. P. falciparum and P. vivax prevalence by qPCR was 40.9% and 65.7% respectively. This compares to 43.8% and 73.2% by nPCR and 47.1% and 67.5% by PCR_LDR_FMA. P. malariae and P. ovale prevalence was 4.7% and 7.3% by qPCR, 3.3% and 3.8% by nPCR, and 7.7% and 4.4% by PCR_LDR_FMA. Prevalence by LM was lower for all four species, being 25.4% for P. falciparum, 54.9% for P. vivax, 2.4% for P. malariae and 0.0% for P. ovale. The quantification by qPCR closely correlated with microscopic quantification for P. falciparum and P. vivax samples (R2 = 0.825 and R2 = 0.505, respectively). The low prevalence of P. malariae and P. ovale did not permit a solid comparative analysis of quantification for these species.; The qPCR assay developed proved optimal for detection of all four Plasmodium species. Densities by LM were well reflected in quantification results by qPCR, whereby congruence was better for P. falciparum than for P. vivax. This likely is a consequence of the generally lower P. vivax densities. Easy performance of the qPCR assay, a less laborious workflow and reduced risk of contamination, together with reduced costs per sample through reduced reaction volume, opens the possibility to implement qPCR in endemic settings as a suitable diagnostic tool for large epidemiological studies

    Real-time PCR assay and rapid diagnostic tests for the diagnosis of clinically suspected malaria patients in Bangladesh

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>More than 95% of total malaria cases in Bangladesh are reported from the 13 high endemic districts. <it>Plasmodium falciparum </it>and <it>Plasmodium vivax </it>are the two most abundant malaria parasites in the country. To improve the detection and management of malaria patients, the National Malaria Control Programme (NMCP) has been using rapid diagnostic test (RDT) in the endemic areas. A study was conducted to establish a SYBR Green-based modified real-time PCR assay as a gold standard to evaluate the performance of four commercially-available malaria RDTs, along with the classical gold standard- microscopy.</p> <p>Methods</p> <p>Blood samples were collected from 338 febrile patients referred for the diagnosis of malaria by the attending physician at Matiranga</p> <p>Upazila Health Complex (UHC) from May 2009 to August 2010. Paracheck RDT and microscopy were performed at the UHC. The blood samples were preserved in EDTA tubes. A SYBR Green-based real-time PCR assay was performed and evaluated. The performances of the remaining three RDTs (Falcivax, Onsite Pf and Onsite Pf/Pv) were also evaluated against microscopy and real-time PCR using the stored blood samples.</p> <p>Result</p> <p>In total, 338 febrile patients were enrolled in the study. Malaria parasites were detected in 189 (55.9%) and 188 (55.6%) patients by microscopy and real-time PCR respectively. Among the RDTs, the highest sensitivity for the detection of <it>P. falciparum </it>(including mixed infection) was obtained by Paracheck [98.8%, 95% confidence interval (CI) 95.8-99.9] and Falcivax (97.6%, 95% CI 94.1-99.4) compared to microscopy and real-time PCR respectively. Paracheck and Onsite Pf/Pv gave the highest specificity (98.8%, 95% CI 95.7-99.9) compared to microscopy and Onsite Pf/Pv (98.8, 95% CI 95.8-99.9) compared to real-time PCR respectively for the detection of <it>P. falciparum</it>. On the other hand Falcivax and Onsite Pf/Pv had equal sensitivity (90.5%, 95% CI 69.6-98.8) and almost 100% specificity compared to microscopy for the detection of <it>P. vivax</it>. However, compared to real-time PCR assay RDTs and microscopy gave low sensitivity (76.9%, 95% CI 56.4-91) in detecting of <it>P. vivax </it>although a very high specificity was obtained (99- 100%).</p> <p>Conclusion</p> <p>The results of this study suggest that the SYBR Green-based real-time PCR assay could be used as an alternative gold standard method in a reference setting. Commercially-available RDTs used in the study are quite sensitive and specific in detecting <it>P. falciparum</it>, although their sensitivity in detecting <it>P. vivax </it>was not satisfactory compared to the real-time PCR assay.</p

    How Much Remains Undetected? Probability of Molecular Detection of Human Plasmodia in the Field

    Get PDF
    BACKGROUND: In malaria endemic areas, most people are simultaneously infected with different parasite clones. Detection of individual clones is hampered when their densities fluctuate around the detection limit and, in case of P. falciparum, by sequestration during part of their life cycle. This has important implications for measures of levels of infection or for the outcome of clinical trials. This study aimed at measuring the detectability of individual P. falciparum and P. vivax parasite clones in consecutive samples of the same patient and at investigating the impact of sampling strategies on basic epidemiological measures such as multiplicity of infection (MOI). METHODS: Samples were obtained in a repeated cross-sectional field survey in 1 to 4.5 years old children from Papua New Guinea, who were followed up in 2-monthly intervals over 16 months. At each follow-up visit, two consecutive blood samples were collected from each child at intervals of 24 hours. Samples were genotyped for the polymorphic markers msp2 for P. falciparum and msp1F3 and MS16 for P. vivax. Observed prevalence and mean MOI estimated from single samples per host were compared to combined data from sampling twice within 24 h. FINDINGS AND CONCLUSION: Estimated detectability was high in our data set (0.79 [95% CI 0.76-0.82] for P. falciparum and, depending on the marker, 0.61 [0.58-0.63] or 0.73 [0.71-0.75] for P. vivax). When genotyping data from sequential samples, collected 24 hours apart, were combined, the increase in measured prevalence was moderate, 6 to 9% of all infections were missed on a single day. The effect on observed MOI was more pronounced, 18 to 31% of all individual clones were not detected in a single bleed. Repeated sampling revealed little difference between detectability of P. falciparum and P. vivax
    • …
    corecore