33 research outputs found

    How much of the invader’s genetic variability can slip between our fingers? A case study of secondary dispersal of Poa annua on King George Island (Antarctica)

    Get PDF
    We studied an invasion of Poa annua on King George Island (Maritime Antarctic). The remoteness of this location, its geographic isolation, and its limited human traffic provided an opportunity to trace the history of an invasion of the species. Poa annua was recorded for the first time at H. Arctowski Polish Antarctic Station in the austral summer of 1985/6. In 2008/9, the species was observed in a new locality at the Ecology Glacier Forefield (1.5 km from “Arctowski”). We used AFLP to analyze the genetic differences among three populations of P. annua: the two mentioned above (Station and Forefield) and the putative origin of the introduction, Warsaw (Poland). There was 38% genetic variance among the populations. Pairwise ФPT was 0.498 between the Forefield and Warsaw populations and 0.283 between Warsaw and Station. There were 15 unique bands in the Warsaw population (frequency from 6% to 100%) and one in the Station/Forefield populations (which appears in all analyzed individuals from both populations). The Δ(K) parameter indicated two groups of samples: Warsaw/Station and Forefield. As indicated by Fu’s Fs statistics and an analysis of mismatch distribution, the Forefield population underwent a bottleneck and/or founder effect. The Forefield population was likely introduced by secondary dispersal from the Station population

    Co-expression network of neural-differentiation genes shows specific pattern in schizophrenia

    Get PDF
    Background: Schizophrenia is a neurodevelopmental disorder with genetic and environmental factors contributing to its pathogenesis, although the mechanism is unknown due to the difficulties in accessing diseased tissue during human neurodevelopment. The aim of this study was to find neuronal differentiation genes disrupted in schizophrenia and to evaluate those genes in post-mortem brain tissues from schizophrenia cases and controls. Methods: We analyzed differentially expressed genes (DEG), copy number variation (CNV) and differential methylation in human induced pluripotent stem cells (hiPSC) derived from fibroblasts from one control and one schizophrenia patient and further differentiated into neuron (NPC). Expression of the DEG were analyzed with microarrays of post-mortem brain tissue (frontal cortex) cohort of 29 schizophrenia cases and 30 controls. A Weighted Gene Co-expression Network Analysis (WGCNA) using the DEG was used to detect clusters of co-expressed genes that werenon-conserved between adult cases and controls brain samples. Results: We identified methylation alterations potentially involved with neuronal differentiation in schizophrenia, which displayed an over-representation of genes related to chromatin remodeling complex (adjP = 0.04). We found 228 DEG associated with neuronal differentiation. These genes were involved with metabolic processes, signal transduction, nervous system development, regulation of neurogenesis and neuronal differentiation. Between adult brain samples from cases and controls there were 233 DEG, with only four genes overlapping with the 228 DEG, probably because we compared single cell to tissue bulks and more importantly, the cells were at different stages of development. The comparison of the co-expressed network of the 228 genes in adult brain samples between cases and controls revealed a less conserved module enriched for genes associated with oxidative stress and negative regulation of cell differentiation. Conclusion: This study supports the relevance of using cellular approaches to dissect molecular aspects of neurogenesis with impact in the schizophrenic brain. We showed that, although generated by different approaches, both sets of DEG associated to schizophrenia were involved with neocortical development. The results add to the hypothesis that critical metabolic changes may be occurring during early neurodevelopment influencing faulty development of the brain and potentially contributing to further vulnerability to the illness.We thank the patients, doctors and nurses involved with sample collection and the Stanley Medical Research Institute. This research was supported by either Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq #17/2008) and Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ). MM (CNPq 304429/2014-7), ACT (FAPESP 2014/00041-1), LL (CAPES 10682/13-9) HV (CAPES) and BP (PPSUS 137270) were supported by their fellowshipsinfo:eu-repo/semantics/publishedVersio

    Pharmacological activities of aminoflavones

    No full text
    Aminoflavones belong to a group of flavonoids, compounds commonly found in nature. Their pharmacological and biochemical effects include cytotoxic, antioxidant and antitumor properties. The studies have shown that complexes of aminoflavons with metal ions can be potential drugs and seem to be promising in the treatment of ovarian cancer, breast cancer, lung adenocarcinoma and melanoma. In addition aminoflavones have a lower cytotoxic activity towards healthy cells than another compounds. In the view of their wide pharmacological and biological actions, they seem to have great therapeutic potential

    Secchi depth-chlorophyll relationship in the Baltic

    No full text
    The paper presents data on Secchi depth in the Southern Baltic waters. The mean annual Secchi depth is 8.2 m in the Gdańsk Deep, 9.6 m in the Bornholm Deep, 9.9 m in the southern Secchi depth is subject to seasonal fluctuations, their amplitude being approximately 35% of the mean annual value. A trigonometric polynomial was applied to describe periodic intra-annual changes of Secchi depth in the Baltic. The largest water transparency was observed in winter, the transparency being lowest in summer. Effects of chlorophyll a concentrations on water transparency are presented in a graphic form

    Data from: The effect of demographic correlations on the stochastic population dynamics of perennial plants

    Get PDF
    Understanding the influence of environmental variability on population dynamics is a fundamental goal of ecology. Theory suggests that, for populations in variable environments, temporal correlations between demographic vital rates (e.g., growth, survival, reproduction) can increase (if positive) or decrease (if negative) the variability of year-to-year population growth. Because this variability generally decreases long-term population viability, vital rate correlations may importantly affect population dynamics in stochastic environments. Despite long-standing theoretical interest, it is unclear whether vital rate correlations are common in nature, whether their directions are predominantly negative or positive, and whether they are of sufficient magnitude to warrant broad consideration in studies of stochastic population dynamics. We used long-term demographic data for three perennial plant species, hierarchical Bayesian parameterization of population projection models, and stochastic simulations to address the following questions: (1) What are the sign, magnitude, and uncertainty of temporal correlations between vital rates? (2) How do specific pairwise correlations affect the year-to-year variability of population growth? (3) Does the net effect of all vital rate correlations increase or decrease year-to-year variability? (4) What is the net effect of vital rate correlations on the long-term stochastic population growth rate (λS)? We found only four moderate to strong correlations, both positive and negative in sign, across all species and vital rate pairs; otherwise, correlations were generally weak in magnitude and variable in sign. The net effect of vital rate correlations ranged from a slight decrease to an increase in the year-to-year variability of population growth, with average changes in variance ranging from -1% to +22%. However, vital rate correlations caused virtually no change in the estimates of λS (mean effects ranging from -0.01% to +0.17%). Therefore, the proportional changes in the variance of population growth caused by demographic correlations were too small on an absolute scale to importantly affect population growth and viability. We conclude that in our three focal populations and perhaps more generally, vital rate correlations have little effect on stochastic population dynamics. This may be good news for population ecologists, because estimating vital rate correlations and incorporating them into population models can be data-intensive and technically challenging
    corecore