236 research outputs found
Combining navigator and optical prospective motion correction for high-quality 500 μm resolution quantitative multi-parameter mapping at 7T
Purpose: High-resolution quantitative multi-parameter mapping shows promise for non-invasively characterizing human brain microstructure but is limited by physiological artifacts. We implemented corrections for rigid head movement and respiration-related B0-fluctuations and evaluated them in healthy volunteers and dementia patients. Methods: Camera-based optical prospective motion correction (PMC) and FID navigator correction were implemented in a gradient and RF-spoiled multi-echo 3D gradient echo sequence for mapping proton density (PD), longitudinal relaxation rate (R1) and effective transverse relaxation rate (R2*). We studied their effectiveness separately and in concert in young volunteers and then evaluated the navigator correction (NAVcor) with PMC in a group of elderly volunteers and dementia patients. We used spatial homogeneity within white matter (WM) and gray matter (GM) and scan-rescan measures as quality metrics. Results: NAVcor and PMC reduced artifacts and improved the homogeneity and reproducibility of parameter maps. In elderly participants, NAVcor improved scan-rescan reproducibility of parameter maps (coefficient of variation decreased by 14.7% and 11.9% within WM and GM respectively). Spurious inhomogeneities within WM were reduced more in the elderly than in the young cohort (by 9% vs. 2%). PMC increased regional GM/WM contrast and was especially important in the elderly cohort, which moved twice as much as the young cohort. We did not find a significant interaction between the two corrections. Conclusion: Navigator correction and PMC significantly improved the quality of PD, R1, and R2* maps, particularly in less compliant elderly volunteers and dementia patients. <br
Micro and nano-patterning of single-crystal diamond by swift heavy ion irradiation
This paper presents experimental data and analysis of the structural damage caused by swift-heavy ion irradiation of single-crystal diamond. The patterned buried structural damage is shown to generate, via swelling, a mirror- pattern on the sample surface, which remains largely damage-free. While extensive results are available for light ion implantations, this effect is reported here for the first time in the heavy ion regime,where a completely different range of input parameters (in terms of ion species, energy, stopping power, etc.) is available for customized irradiation. The chosen ion species are Au and Br, in the energy range 10–40 MeV. The observed patterns, as characterized by profilometry and atomic force microscopy, are reported in a series ofmodel experiments,which show swelling patterns ranging from a few nm to above 200 nm. Moreover, a systematic phenomenological modeling is presented, inwhich surface swelling measurements are correlated to buried crystal damage. A comparison ismade with data for light ion implantations, showing good compatibilitywith the proposedmodels. The modeling presented in thiswork can be useful for the design and realization of micropatterned surfaces in single crystal diamond, allowing generating highly customized structures by combining appropriately chosen irradiation parameters and masks
A rapid in vivo screen for pancreatic ductal adenocarcinoma therapeutics
Pancreatic ductal adenocarcinoma (PDA) is the fourth leading cause of cancer-related deaths in the United States, and is projected to be second by 2025. It has the worst survival rate among all major cancers. Two pressing needs for extending life expectancy of affected individuals are the development of new approaches to identify improved therapeutics, addressed herein, and the identification of early markers. PDA advances through a complex series of intercellular and physiological interactions that drive cancer progression in response to organ stress, organ failure, malnutrition, and infiltrating immune and stromal cells. Candidate drugs identified in organ culture or cell-based screens must be validated in preclinical models such as KIC (p48Cre;LSL-KrasG12D;Cdkn2af/f) mice, a genetically engineered model of PDA in which large aggressive tumors develop by 4 weeks of age. We report a rapid, systematic and robust in vivo screen for effective drug combinations to treat Kras-dependent PDA. Kras mutations occur early in tumor progression in over 90% of human PDA cases. Protein kinase and G-protein coupled receptor (GPCR) signaling activates Kras. Regulators of G-protein signaling (RGS) proteins are coincidence detectors that can be induced by multiple inputs to feedback-regulate GPCR signaling. We crossed Rgs16::GFP bacterial artificial chromosome (BAC) transgenic mice withKIC mice and show that the Rgs16::GFP transgene is a KrasG12D-dependent marker of all stages of PDA, and increases proportionally to tumor burden in KIC mice. RNA sequencing (RNA-Seq) analysis of cultured primary PDA cells reveals characteristics of embryonic progenitors of pancreatic ducts and endocrine cells, and extraordinarily high expression of the receptor tyrosine kinase Axl, an emerging cancer drug target. In proof-of-principle drug screens, we find that weanling KIC mice with PDA treated for 2 weeks with gemcitabine (with or without Abraxane) plus inhibitors of Axl signaling (warfarin and BGB324) have fewer tumor initiation sites and reduced tumor size compared with the standard-of-care treatment. Rgs16::GFP is therefore an in vivo reporter of PDA progression and sensitivity to new chemotherapeutic drug regimens such as Axl-targeted agents. This screening strategy can potentially be applied to identify improved therapeutics for other cancers
Micro and nano-patterning of single-crystal diamond by swift heavy ion irradiation
© 2016 Elsevier B.V.This paper presents experimental data and analysis of the structural damage caused by swift-heavy ion irradiation of single-crystal diamond. The patterned buried structural damage is shown to generate, via swelling, a mirror-pattern on the sample surface, which remains largely damage-free. While extensive results are available for light ion implantations, this effect is reported here for the first time in the heavy ion regime, where a completely different range of input parameters (in terms of ion species, energy, stopping power, etc.) is available for customized irradiation. The chosen ion species are Au and Br, in the energy range 10–40 MeV. The observed patterns, as characterized by profilometry and atomic force microscopy, are reported in a series of model experiments, which show swelling patterns ranging from a few nm to above 200 nm. Moreover, a systematic phenomenological modeling is presented, in which surface swelling measurements are correlated to buried crystal damage. A comparison is made with data for light ion implantations, showing good compatibility with the proposed models. The modeling presented in this work can be useful for the design and realization of micropatterned surfaces in single crystal diamond, allowing generating highly customized structures by combining appropriately chosen irradiation parameters and masks.GG acknowledges support from the ALBA synchrotron, W. Schildkamp for inspiring discussions on the behaviour of diamond and J. Ferrer for his help in experiment preparation.
GG, MD-H, VT-M, OP-R and JO acknowledge the projects MAT-2011-28379-C03-02 of the Spanish Ministry of Economy and Competitiveness, TECHNOFUSION(II)CM (S2013/MAE2745) of the Community of Madrid, and Moncloa Campus of International Excellence (UCM-UPM) foundation for offering a PICATA postdoctoral fellowship (OP-R).
FP is supported by the “DiNaMo” project no. 157660 funded by National Institute of Nuclear Physics. PO is supported by the FIRB “Futuro in Ricerca 2010” project (CUP code: D11J11000450001) funded by MIUR and by the “A.Di.N-Tech.” project (CUP code: D15E13000130003) funded by the University of Torino and “Compagnia di San Paolo”. The MeV ion beam implantations performed at the INFN Legnaro National Laboratories was supported by the “Dia.Fab.” experiment, and those at the INFN LABEC Laboratory by the “FARE” and “CICAS” experiments.
NMP is supported by the European Research Council (ERC StG Ideas 2011 BIHSNAM no. 279985, ERC PoC 2013-2 KNOTOUGH no. 632277 and ERC PoC 2015 SILKENE no. 693670), by the European Commission under the Graphene Flagship (“Nanocomposites”, no. 604391). FB acknowledges support from BIHSNAM.
LL-M and CO acknowledge the Spanish MINECO through the Severo Ochoa Program (SEV-2015-0496) and MAT2013-47869-C4-1-P.
CO acknowledges the specific agreement between ICMAB-CSIC and the Synchrotron Light Facility ALBA
A HIF1α Regulatory Loop Links Hypoxia and Mitochondrial Signals in Pheochromocytomas
Pheochromocytomas are neural crest–derived tumors that arise from inherited or sporadic mutations in at least six independent genes. The proteins encoded by these multiple genes regulate distinct functions. We show here a functional link between tumors with VHL mutations and those with disruption of the genes encoding for succinate dehydrogenase (SDH) subunits B (SDHB) and D (SDHD). A transcription profile of reduced oxidoreductase is detected in all three of these tumor types, together with an angiogenesis/hypoxia profile typical of VHL dysfunction. The oxidoreductase defect, not previously detected in VHL-null tumors, is explained by suppression of the SDHB protein, a component of mitochondrial complex II. The decrease in SDHB is also noted in tumors with SDHD mutations. Gain-of-function and loss-of-function analyses show that the link between hypoxia signals (via VHL) and mitochondrial signals (via SDH) is mediated by HIF1α. These findings explain the shared features of pheochromocytomas with VHL and SDH mutations and suggest an additional mechanism for increased HIF1α activity in tumors
Contributions of patient and citizen researchers to 'Am I the right way up?' study of balance in posterior cortical atrophy and typical Alzheimer's disease
The current report describes the journey from the sharing of a single, extraordinary experience during a support group conversation to the development of a novel scientific investigation of balance problems in a rarer form of dementia. The story centres around the involvement of people living with or caring for someone with posterior cortical atrophy (often referred to as the visual variant of Alzheimer’s disease) in highlighting hitherto under-appreciated consequences of their condition upon their ability to know ‘Am I the right way up?’. We describe how comments and descriptions of these balance symptoms were collated and communicated, and the involvement of people with posterior cortical atrophy in shaping a series of scientific hypotheses and developing and adapting appropriate experimental materials and procedures. We also reflect more broadly on how we might better recognise, acknowledge and encourage different forms of involvement, and describe several engagement-inspired extensions to the research involving people living with dementia, scientists and artists
Elevated gamma glutamyl transferase levels are associated with the location of acute pulmonary embolism. Cross-sectional evaluation in hospital setting
ABSTRACT CONTEXT AND OBJECTIVE: The location of embolism is associated with clinical findings and disease severity in cases of acute pulmonary embolism. The level of gamma-glutamyl transferase increases under oxidative stress-related conditions. In this study, we investigated whether gamma-glutamyl transferase levels could predict the location of pulmonary embolism. DESIGN AND SETTING: Hospital-based cross-sectional study at Cumhuriyet University, Sivas, Turkey. METHODS : 120 patients who were diagnosed with acute pulmonary embolism through computed tomography-assisted pulmonary angiography were evaluated. They were divided into two main groups (proximally and distally located), and subsequently into subgroups according to thrombus localization as follows: first group (thrombus in main pulmonary artery; n = 9); second group (thrombus in main pulmonary artery branches; n = 71); third group (thrombus in pulmonary artery segmental branches; n = 34); and fourth group (thrombus in pulmonary artery subsegmental branches; n = 8). RESULTS : Gamma-glutamyl transferase levels on admission, heart rate, oxygen saturation, right ventricular dilatation/hypokinesia, pulmonary artery systolic pressure and cardiopulmonary resuscitation requirement showed prognostic significance in univariate analysis. The multivariate logistic regression model showed that gamma-glutamyl transferase level on admission (odds ratio, OR = 1.044; 95% confidence interval, CI: 1.011-1.079; P = 0.009) and pulmonary artery systolic pressure (OR = 1.063; 95% CI: 1.005-1.124; P = 0.033) remained independently associated with proximally localized thrombus in pulmonary artery. CONCLUSIONS : The findings revealed a significant association between increased existing embolism load in the pulmonary artery and increased serum gamma-glutamyl transferase levels
c-Met overexpression in inflammatory breast carcinomas: automated quantification on tissue microarrays
Inflammatory breast carcinoma (IBC) is a rare but aggressive tumour associated with poor outcome owing to early metastases. Increased expression of c-Met protein correlates with reduced survival and high metastatic risk in human cancers including breast carcinomas and is targetable by specific drugs, that could potentially improve the prognosis. In the present study, we compared c-Met expression in IBC (n=41) and non-IBC (n=480) immunohistochemically (Ventana Benchmark autostainer) in two tissue microarrays (TMA) along with PI3K and E-cadherin. The results were quantified through an automated image analysis device (SAMBA Technologies). We observed that (i) c-Met was significantly overexpressed in IBC as compared with non-IBC (P<0.001), (ii) PI3K was overexpressed (P<0.001) in IBC, suggesting that the overexpressed c-Met is functionally active at least through the PI3K signal transduction pathway; and (iii) E-cadherin was paradoxically also overexpressed in IBC. We concluded that overexpressed c-Met in IBC constitutes a potential target for specific therapy for the management of patients with poor-outcome tumours such as IBC. Automated image analysis of TMA proved to be a valuable tool for high-throughput immunohistochemical quantification of the expression of intratumorous protein markers
An expression signature of syndecan-1 (CD138), E-cadherin and c-met is associated with factors of angiogenesis and lymphangiogenesis in ductal breast carcinoma in situ
INTRODUCTION: Heparan sulphate proteoglycan syndecan-1 modulates cell proliferation, adhesion, migration and angiogenesis. It is a coreceptor for the hepatocyte growth factor receptor c-met, and its coexpression with E-cadherin is synchronously regulated during epithelial-mesenchymal transition. In breast cancer, changes in the expression of syndecan-1, E-cadherin and c-met correlate with poor prognosis. In this study we evaluated whether coexpression of these functionally linked prognostic markers constitutes an expression signature in ductal carcinoma in situ (DCIS) of the breast that may promote cell proliferation and (lymph)angiogenesis. METHODS: Expression of syndecan-1, E-cadherin and c-met was detected immunohistochemically using a tissue microarray in tumour specimens from 200 DCIS patients. Results were correlated with the expression patterns of angiogenic and lymphangiogenic markers. Coexpression of the three prognostic markers was evaluated in human breast cancer cells by confocal immunofluorescence microscopy and RT-PCR. RESULTS: Coexpression and membrane colocalization of the three markers was confirmed in MCF-7 cells. E-cadherin expression decreased, and c-met expression increased progressively in more aggressive cell lines. Tissue microarray analysis revealed strong positive staining of tumour cells for syndecan-1 in 72%, E-cadherin in 67.8% and c-met in 48.6% of DCIS. E-cadherin expression was significantly associated with c-met and syndecan-1. Expression of c-met and syndecan-1 was significantly more frequent in the subgroup of patients with pure DCIS than in those with DCIS and a coexisting invasive carcinoma. Levels of c-met and syndecan-1 expression were associated with HER2 expression. Expression of c-met significantly correlated with expression of endothelin A and B receptors, vascular endothelial growth factor (VEGF)-A and fibroblast growth factor receptor-1, whereas E-cadherin expression correlated significantly with endothelin A receptor, VEGF-A and VEGF-C staining. CONCLUSION: Syndecan-1, E-cadherin and c-met constitute a marker signature associated with angiogenic and lymphangiogenic factors in DCIS. This coexpression may reflect a state of parallel activation of different signal transduction pathways, promoting tumour cell proliferation and angiogenesis. Our findings have implications for future therapeutic approaches in terms of a multiple target approach, which may be useful early in breast cancer progression
- …