29 research outputs found

    Laser Shock Microforming of Thin Metal Sheets

    Get PDF
    Continuous and long-pulse lasers have been used for the forming of metal sheets in macroscopic mechanical applications. However, for the manufacturing of micro-electromechanical systems (MEMS), the applicability of such type of lasers is limited by the long-relaxation-time of the thermal fields responsible for the forming phenomena. As a consequence of such slow relaxation, the final sheet deformation state is attained only after a certain time, what makes the generated internal residual stress fields more dependent on ambient conditions and might make difficult the subsequent assembly process from the point of view of residual stresses due to adjustment. The use of ns laser pulses provides a suitable parameter matching for the laser forming of an important range of sheet components used in MEMS that, preserving the short interaction time scale required for the predominantly mechanic (shock) induction of deformation residual stresses, allows for the successful processing of components in a medium range of miniaturization, particularly important according to its frequent use in such systems. In the present paper, a discussion is presented on the physics of laser shock microforming and the influence of the different effects on the net bending angle. The experimental setup used for the experiments, sample fabrication and experimental results of influence of number of laser pulses on the net bending angle are also presented

    Model based optimization criteria for the generation of deep compressive residual stress fields in high elastic limit metallic alloys by ns-laser shock processing

    Get PDF
    Laser Shock Processing (LSP) is based on the application of a high intensity pulsed Laser beam (IN1 GW/cm2; τb50 ns) on a metallic target forcing a sudden vaporization of its surface into a high temperature and density plasma that immediately develops inducing a shock wave propagating into the material. The main acknowledged advantages of LSP consist on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behavior, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Due to these specific advantages, Laser Shock Processing is considered as a competitive alternative technology to classical treatments for improving fatigue, corrosion cracking and wear resistance of metallic materials, and is being developed as a practical process amenable to production technology. In this paper, a model based systematization of process optimization criteria and a practical assessment on the real possibilities of the technique is presented along with practical results at laboratory scale on the application of LSP to characteristic high elastic limit metallic alloys, showing the induced residual stresses fields and the corresponding results on mechanical properties improvement induced by the treatment. The homogeneity of the residual stress fields distribution following the laser treatment spatial density will be specially analyzed

    UV laser-induced high resolution cleaving of Si wafers for micro-nano devices and polymeric waveguide characterization

    Full text link
    In this work we propose a method for cleaving silicon-based photonic chips by using a laser based micromachining system, consisting of a ND:YVO4laser emitting at 355 nm in nanosecond pulse regime and a micropositioning system. The laser makes grooved marks placed at the desired locations and directions where cleaves have to be initiated, and after several processing steps, a crack appears and propagate along the crystallographic planes of the silicon wafer. This allows cleavage of the chips automatically and with high positioning accuracy, and provides polished vertical facets with better quality than the obtained with other cleaving process, which eases the optical characterization of photonic devices. This method has been found to be particularly useful when cleaving small-sized chips, where manual cleaving is hard to perform; and also for polymeric waveguides, whose facets get damaged or even destroyed with polishing or manual cleaving processing. Influence of length of the grooved line and speed of processing is studied for a variety of silicon chips. An application for cleaving and characterizing sol–gel waveguides is presented. The total amount of light coupled is higher than when using any other procedure

    High strain-rate material model validation for laser peening simulation

    Get PDF
    Finite element modeling can be a powerful tool for predicting residual stresses induced by laser peening; however the sign and magnitude of the stress predictions depend strongly on how the material model captures the high strain rate response. Although a Johnson-Cook formulation is often employed, its suitability for modeling phenomena at very high strain rates has not been rigorously evaluated. In this paper, we address the effectiveness of the Johnson-Cook model, with parameters developed from lower strain rate material data (∼10^3 s^–1), to capture the higher strain rate response (∼10^5–10^6 s^–1) encountered during the laser peening process. Published Johnson-Cook parameters extracted from split Hopkinson bar testing were used to predict the shock response of aluminum samples during high-impact flyer plate tests. Additional quasi-static and split Hopkinson bar tests were also conducted to study the model response in the lower strain rate regime. The overall objective of the research was to ascertain whether a material model based on conventional test data (quasi-static compression testing and split Hopkinson bar measurements) can credibly be used in FE simulations to predict laser peen-induced stresses

    Bladder cancer index: cross-cultural adaptation into Spanish and psychometric evaluation

    Get PDF
    BACKGROUND: The Bladder Cancer Index (BCI) is so far the only instrument applicable across all bladder cancer patients, independent of tumor infiltration or treatment applied. We developed a Spanish version of the BCI, and assessed its acceptability and metric properties. METHODS: For the adaptation into Spanish we used the forward and back-translation method, expert panels, and cognitive debriefing patient interviews. For the assessment of metric properties we used data from 197 bladder cancer patients from a multi-center prospective study. The Spanish BCI and the SF-36 Health Survey were self-administered before and 12 months after treatment. Reliability was estimated by Cronbach's alpha. Construct validity was assessed through the multi-trait multi-method matrix. The magnitude of change was quantified by effect sizes to assess responsiveness. RESULTS: Reliability coefficients ranged 0.75-0.97. The validity analysis confirmed moderate associations between the BCI function and bother subscales for urinary (r = 0.61) and bowel (r = 0.53) domains; conceptual independence among all BCI domains (r ≤ 0.3); and low correlation coefficients with the SF-36 scores, ranging 0.14-0.48. Among patients reporting global improvement at follow-up, pre-post treatment changes were statistically significant for the urinary domain and urinary bother subscale, with effect sizes of 0.38 and 0.53. CONCLUSIONS: The Spanish BCI is well accepted, reliable, valid, responsive, and similar in performance compared to the original instrument. These findings support its use, both in Spanish and international studies, as a valuable and comprehensive tool for assessing quality of life across a wide range of bladder cancer patients

    Deep-sequencing reveals broad subtype-specific HCV resistance mutations associated with treatment failure

    Get PDF
    A percentage of hepatitis C virus (HCV)-infected patients fail direct acting antiviral (DAA)-based treatment regimens, often because of drug resistance-associated substitutions (RAS). The aim of this study was to characterize the resistance profile of a large cohort of patients failing DAA-based treatments, and investigate the relationship between HCV subtype and failure, as an aid to optimizing management of these patients. A new, standardized HCV-RAS testing protocol based on deep sequencing was designed and applied to 220 previously subtyped samples from patients failing DAA treatment, collected in 39 Spanish hospitals. The majority had received DAA-based interferon (IFN) a-free regimens; 79% had failed sofosbuvir-containing therapy. Genomic regions encoding the nonstructural protein (NS) 3, NS5A, and NS5B (DAA target regions) were analyzed using subtype-specific primers. Viral subtype distribution was as follows: genotype (G) 1, 62.7%; G3a, 21.4%; G4d, 12.3%; G2, 1.8%; and mixed infections 1.8%. Overall, 88.6% of patients carried at least 1 RAS, and 19% carried RAS at frequencies below 20% in the mutant spectrum. There were no differences in RAS selection between treatments with and without ribavirin. Regardless of the treatment received, each HCV subtype showed specific types of RAS. Of note, no RAS were detected in the target proteins of 18.6% of patients failing treatment, and 30.4% of patients had RAS in proteins that were not targets of the inhibitors they received. HCV patients failing DAA therapy showed a high diversity of RAS. Ribavirin use did not influence the type or number of RAS at failure. The subtype-specific pattern of RAS emergence underscores the importance of accurate HCV subtyping. The frequency of “extra-target” RAS suggests the need for RAS screening in all three DAA target regions

    Evolution of the use of corticosteroids for the treatment of hospitalised COVID-19 patients in Spain between March and November 2020: SEMI-COVID national registry

    Get PDF
    Objectives: Since the results of the RECOVERY trial, WHO recommendations about the use of corticosteroids (CTs) in COVID-19 have changed. The aim of the study is to analyse the evolutive use of CTs in Spain during the pandemic to assess the potential influence of new recommendations. Material and methods: A retrospective, descriptive, and observational study was conducted on adults hospitalised due to COVID-19 in Spain who were included in the SEMI-COVID- 19 Registry from March to November 2020. Results: CTs were used in 6053 (36.21%) of the included patients. The patients were older (mean (SD)) (69.6 (14.6) vs. 66.0 (16.8) years; p < 0.001), with hypertension (57.0% vs. 47.7%; p < 0.001), obesity (26.4% vs. 19.3%; p < 0.0001), and multimorbidity prevalence (20.6% vs. 16.1%; p < 0.001). These patients had higher values (mean (95% CI)) of C-reactive protein (CRP) (86 (32.7-160) vs. 49.3 (16-109) mg/dL; p < 0.001), ferritin (791 (393-1534) vs. 470 (236- 996) µg/dL; p < 0.001), D dimer (750 (430-1400) vs. 617 (345-1180) µg/dL; p < 0.001), and lower Sp02/Fi02 (266 (91.1) vs. 301 (101); p < 0.001). Since June 2020, there was an increment in the use of CTs (March vs. September; p < 0.001). Overall, 20% did not receive steroids, and 40% received less than 200 mg accumulated prednisone equivalent dose (APED). Severe patients are treated with higher doses. The mortality benefit was observed in patients with oxygen saturation </=90%. Conclusions: Patients with greater comorbidity, severity, and inflammatory markers were those treated with CTs. In severe patients, there is a trend towards the use of higher doses. The mortality benefit was observed in patients with oxygen saturation </=90%

    Chemical analysis on laser processed Ultrahydrophobic Ti-6Al-4V surface by high vacuum Process

    No full text
    A technique has been developed for fabrication of ultrahydrophobic Ti-6Al-4V surface by vacuum process. This report has the data related to the article “Hybrid laser and vacuum process for rapid ultrahydrophobic Ti-6Al-4 V surface formation” on the fabrication of ultrahydrophobic Ti-6Al-4V by Vacuum process (Jagdheesh et al., 2019). The present data consist of X-ray photo electron spectroscopy spectrums recorded for the laser patterned ultrahydrophobic samples, droplet image and surface chemical composition of laser patterned Ti-6Al-4V samples before vacuum process(b. v. p.) and after vacuum process (a. v. p.) for 120 min. The presented data give a clear idea about the chemical modification evolved during the vacuum process

    On the fatigue behavior of medical Ti6Al4V roughened by grit blasting and abrasiveless waterjet peening

    No full text
    Flat fatigue specimens of biomedical Ti6Al4V ELI alloy were surface-processed by high pressure waterjet peening (WJP) without abrasive particles using moderate to severe conditions that yield roughness values in the range of those obtained by commercial grit blasting (BL) with alumina particles. Fatigue behavior of WJP and BL specimens was characterized under cyclical uniaxial tension tests (R=0.1). The emphasis was put on a comparative analysis of the surface and subsurface induced effects and in their relevance on fatigue behavior. Within the experimental setup of this investigation it resulted that blasting with alumina particles was less harmful for fatigue resistance than abrasiveless WJP. BL specimens resulted in higher subsurface hardening and compressive residual stresses. Specimens treated with more severe WJP parameters presented much higher mass loss and lower compressive residual stresses. From the analysis performed in this work, it follows that, in addition to roughness, waviness emerges as another important topographic parameter to be taken into account to try to predict fatigue behavior. It is envisaged that optimization of WJP parameters with the aim of reducing waviness and mass loss should lead to an improvement of fatigue resistanceThe authors acknowledge support from projects MINECO (MAT 2012-37736-C05-01 and MAT 2012-37782), HZB (BESSY, Proposal 14100041) and Comunidad de Madrid (Multimat Challenge S2013/MIT-2862). The CIBER of Bioingenieria, Biomateriales y Nanomedicina is supported by the ISCIII. Thanks are also due to Jesus Chao for his help with the tensile tests, Dr. Gaspar Gonzalez-Doncel for his help with measurement of residual stresses, both from CENIM, and Alfredo Suarez from Tecnalia for his help with the waterjet processing. Naiara Gallardo and Edurne Laurin are greatfully acknowledged for their technical assistance, as well as the laboratory of Microscopy (A. Garcia and A. Tomas)
    corecore