96 research outputs found

    Palladium‐Based Catalysts‐Supported onto End‐Functionalized Poly(lactide) for C–C Double and Triple Bond Hydrogenation Reactions

    Get PDF
    Poly(lactide) (PLA), which is the polymer that will be discussed in this chapter, was functionalized with nitrogen containing aromatic groups by means ring opening polymerization (ROP) reactions. The obtained macroligands were successfully employed to coordinate Pd(II), which chemoselectively hydrogenated αβ–unsaturated carbonyl compounds to give the saturated counterparts as main product. The catalyst could be easily recycled upon a simple filtration process

    Gold nanoparticles onto cerium oxycarbonate as highly efficient catalyst for aerobic allyl alcohol oxidation

    Get PDF
    Abstract Au nanoparticles, generated by the metal vapor synthesis technique, were supported onto cerium oxycarbonate monohydrate (Ce2O(CO3)2·H2O) giving Au@Ce2O(CO3)2·H2O. The obtained heterogeneous catalyst was used in the aerobic allyl alcohol oxidation reaction performed in toluene, showing a notably higher catalytic substrate conversion and isomerization activity compared to Au onto ceria, which is the reference catalyst for this type of catalysis. Results originating from catalytic recycling experiments and PXRD, HRTEM and XPS measurements carried out on recovered Au@Ce2O(CO3)2·H2O, confirmed the stability of the catalyst under aerobic oxidation reaction conditions and hence its recyclability, without the need of a regeneration step

    Deep Control of Linear Oligomerization of Glycerol Using Lanthanum Catalyst on Mesoporous Silica Gel

    Get PDF
    The valorization of glycerol (1), a waste of biodiesel production of Fatty Acid Methyl Esters (FAMEs), adopting a “green” approach, represents an important goal of sustainable chemistry. While the polymerization of 1 to hyperbranched oligomers is a well-established process, the linear analogues are difficult to obtain. In this context, we explore the reaction without the solvent of heterogeneous hybrid La(III)O-KIT-6 catalyst (2), which is based on lanthanum oxide on mesoporous silica gel, showing a superior linear selectivity compared to most of the analogous catalysts recently reported

    An easily recoverable and recyclable homogeneous polyester-based Pd catalytic system for the hydrogenation of α,β-unsaturated carbonyl compounds

    Get PDF
    Homogeneous catalysis is an efficient tool to carry out hydrogenation processes but the major drawback is represented by the separation of the expensive catalyst from the product mixture. In this view we prepared a polyester-based Pd catalytic system that offers the advantages of both homogenous and heterogeneous catalyses: efficacy, selectivity and recyclability. Here its application in the hydrogenation of selected alpha,beta-unsaturated carbonyl compounds is described

    Thermo-oxidative stabilization of poly(lactic acid) with antioxidant intercalated layered double hydroxides

    Get PDF
    Two antioxidant modified layered double hydroxides (AO-LDHs) were successfully prepared by theintercalation of 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid (IrganoxCOOH) and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) in the layered structure of LDH. It was foundthat by anchoring the phenolic moieties to the LDH layers the antioxidant power is retained in the caseof Trolox, and even amplified in the case of IrganoxCOOH. A small amount of the two AO-LDHs wasincorporated into poly(lactic acid), PLA, by solution mixing and melt extrusion. The thermo-oxidativestability of the composites was compared with that of the neat PLA and PLA containing free AOs. SECanalysis indicates that, after a controlled period of ageing, both the AO-LDHs protect the PLA fromchain scission. The oxidation induction time (OIT, DSC) at 230 °C shows also the beneficial effects ofthe presence of the functional filler in the polymer matrix. Further, results from a preliminary migrationtest suggest that the AO species have a low tendency to migrate away from the AO-LDHs embedded inthe polymer matrix thus keeping the AO protected inside the nanofiller layers thereby remaining activefor a longer time

    Glycerol to lactic acid conversion by NHC-stabilized iridium nanoparticles

    Get PDF
    Hydrogen reduction of an Ir(I) complex featured by a bulky N-heterocyclic carbene (NHC) ligand in dichloromethane gave small-sized (1.8 nm) Ir nanoparticles (NPs) decorated with NHC ligands (IrNHC). 1,4-Dioxane solutions of the latter particles were successfully applied to convert glycerol into lactic acid in the presence of NaOH (i.e. 1 mol equivalent with respect to glycerol). IrNHC showed an atom-related TOF value of almost 104 h−1, an almost exclusive formation of liquid reaction products, a high selectivity for lactic acid (93.0%) and a complete recyclability in air atmosphere. Attempts to synthesize analogous NHC-stabilized Ir NPs on a high surface area carbon support (CK) by reducing the same Ir(I) precursor, supported onto CK, prior to the hydrogen reduction in water, gave almost naked CK-supported Ir NPs (1.4 nm). Their catalytic activity tested for the same reaction in water as reaction medium, exhibited much lower catalytic activity (4 7 103 h−1), a lower percentage of liquid reaction products (i.e. 27.0% of the converted glycerol) and a lower selectivity for lactic acid compared to IrNHC

    Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis

    Get PDF
    The energetic convenience of electrolytic water splitting is limited by thermodynamics. Consequently, significant levels of hydrogen production can only be obtained with an electrical energy consumption exceeding 45 kWh kg(-1)H2. Electrochemical reforming allows the overcoming of such thermodynamic limitations by replacing oxygen evolution with the oxidation of biomass-derived alcohols. Here we show that the use of an original anode material consisting of palladium nanoparticles deposited on to a three-dimensional architecture of titania nanotubes allows electrical energy savings up to 26.5 kWh kg(-1)H2 as compared with proton electrolyte membrane water electrolysis. A net energy analysis shows that for bio-ethanol with energy return of the invested energy larger than 5.1 (for example, cellulose), the electrochemical reforming energy balance is advantageous over proton electrolyte membrane water electrolysis

    Побожій С.І. Мистецтвознавчі нариси: монографія. - Суми, 2013. - 416 с.: 112 арк. іл.

    Get PDF
    Рецензія Сергія Дегтярьова на книжку "Побожій С.І. Мистецтвознавчі нариси: монографія. - Суми, 2013. - 416 с.: 112 арк. іл.".Рецензия Сергея Дегтярёва на книгу "Побожій С.І. Мистецтвознавчі нариси: монографія. - Суми, 2013. - 416 с.: 112 арк. іл.".Review of the book "Побожій С.І. Мистецтвознавчі нариси: монографія. - Суми, 2013. - 416 с.: 112 арк. іл." by Sergiy Degtyaryov

    Green and scalable synthesis of nanocrystalline kuramite

    Get PDF
    The new generation of solar cells aims to overcome many of the issues created by silicon-based devices (e.g., decommissioning, flexibility and high-energy production costs). Due to the scarcity of the resources involved in the process and the need for the reduction of potential pollution, a greener approach to solar cell material production is required. Among others, the solvothermal approach for the synthesis of nanocrystalline Cu-Sn-S (CTS) materials fulfils all of these requirements. The material constraints must be considered, not only for the final product, but for the whole production process. Most works reporting the successful synthesis of CTS have employed surfactants, high pressure or noxious solvents. In this paper, we demonstrate the synthesis of nanocrystalline kuramite by means of a simpler, greener and scalable solvothermal synthesis. We exploited a multianalytical characterization approach (X-ray diffraction, extended X-ray absorption fine structure, field emission scanning electron microscopy, Raman spectroscopy and electronic microprobe analysis (EMPA) to discriminate kuramite from other closely related polymorphs. Moreover, we confirmed the presence of structural defects due to a relevant antisite population
    corecore