149 research outputs found

    Effects of Cell Morphology and Attachment to a Surface on the Hydrodynamic Performance of Unicellular Choanoflagellates

    Get PDF
    Choanoflagellates, eukaryotes that are important predators on bacteria in aquatic ecosystems, are closely related to animals and are used as a model system to study the evolution of animals from protozoan ancestors. The choanoflagellate Salpingoeca rosetta has a complex life cycle with different morphotypes, some unicellular and some multicellular. Here we use computational fluid dynamics to study the hydrodynamics of swimming and feeding by different unicellular stages of S. rosetta: a swimming cell with a collar of prey-capturing microvilli surrounding a single flagellum, a thecate cell attached to a surface and a dispersal-stage cell with a slender body, long flagellum and short collar. We show that a longer flagellum increases swimming speed, longer microvilli reduce speed and cell shape only affects speed when the collar is very short. The flux of prey-carrying water into the collar capture zone is greater for swimming than sessile cells, but this advantage decreases with collar size. Stalk length has little effect on flux for sessile cells. We show that ignoring the collar, as earlier models have done, overestimates flux and greatly overestimates the benefit to feeding performance of swimming versus being attached, and of a longer stalk for attached cells

    Generalized Logistic Models and its orthant tail dependence

    Get PDF
    The Multivariate Extreme Value distributions have shown their usefulness in environmental studies, financial and insurance mathematics. The Logistic or Gumbel-Hougaard distribution is one of the oldest multivariate extreme value models and it has been extended to asymmetric models. In this paper we introduce generalized logistic multivariate distributions. Our tools are mixtures of copulas and stable mixing variables, extending approaches in Tawn (1990), Joe and Hu (1996) and Foug\`eres et al. (2009). The parametric family of multivariate extreme value distributions considered presents a flexible dependence structure and we compute for it the multivariate tail dependence coefficients considered in Li (2009)

    High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy

    Get PDF
    We demonstrate a record bandwidth high energy supercontinuum source suitable for multispectral photoacoustic microscopy. The source has more than 150 nJ?10 nm bandwidth over a spectral range of 500 to 1600 nm. This performance is achieved using a carefully designed fiber taper with large-core input for improved power handling and small-core output that provides the desired spectral range of the supercontinuum source

    SPINN: Synergistic Progressive Inference of Neural Networks over Device and Cloud

    Full text link
    Despite the soaring use of convolutional neural networks (CNNs) in mobile applications, uniformly sustaining high-performance inference on mobile has been elusive due to the excessive computational demands of modern CNNs and the increasing diversity of deployed devices. A popular alternative comprises offloading CNN processing to powerful cloud-based servers. Nevertheless, by relying on the cloud to produce outputs, emerging mission-critical and high-mobility applications, such as drone obstacle avoidance or interactive applications, can suffer from the dynamic connectivity conditions and the uncertain availability of the cloud. In this paper, we propose SPINN, a distributed inference system that employs synergistic device-cloud computation together with a progressive inference method to deliver fast and robust CNN inference across diverse settings. The proposed system introduces a novel scheduler that co-optimises the early-exit policy and the CNN splitting at run time, in order to adapt to dynamic conditions and meet user-defined service-level requirements. Quantitative evaluation illustrates that SPINN outperforms its state-of-the-art collaborative inference counterparts by up to 2x in achieved throughput under varying network conditions, reduces the server cost by up to 6.8x and improves accuracy by 20.7% under latency constraints, while providing robust operation under uncertain connectivity conditions and significant energy savings compared to cloud-centric execution.Comment: Accepted at the 26th Annual International Conference on Mobile Computing and Networking (MobiCom), 202

    Heat shock protein-90-alpha, a prolactin-STAT5 target gene identified in breast cancer cells, is involved in apoptosis regulation

    Get PDF
    Introduction The prolactin-Janus-kinase-2-signal transducer and activator of transcription-5 (JAK2-STAT5) pathway is essential for the development and functional differentiation of the mammary gland. The pathway also has important roles in mammary tumourigenesis. Prolactin regulated target genes are not yet well defined in tumour cells, and we undertook, to the best of our knowledge, the first large genetic screen of breast cancer cells treated with or without exogenous prolactin. We hypothesise that the identification of these genes should yield insights into the mechanisms by which prolactin participates in cancer formation or progression, and possibly how it regulates normal mammary gland development. Methods We used subtractive hybridisation to identify a number of prolactin-regulated genes in the human mammary carcinoma cell line SKBR3. Northern blotting analysis and luciferase assays identified the gene encoding heat shock protein 90-alpha (HSP90A) as a prolactin-JAK2-STAT5 target gene, whose function was characterised using apoptosis assays. Results We identified a number of new prolactin-regulated genes in breast cancer cells. Focusing on HSP90A, we determined that prolactin increased HSP90A mRNA in cancerous human breast SKBR3 cells and that STAT5B preferentially activated the HSP90A promoter in reporter gene assays. Both prolactin and its downstream protein effector, HSP90α, promote survival, as shown by apoptosis assays and by the addition of the HSP90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), in both untransformed HC11 mammary epithelial cells and SKBR3 breast cancer cells. The constitutive expression of HSP90A, however, sensitised differentiated HC11 cells to starvation-induced wild-type p53-independent apoptosis. Interestingly, in SKBR3 breast cancer cells, HSP90α promoted survival in the presence of serum but appeared to have little effect during starvation. Conclusions In addition to identifying new prolactin-regulated genes in breast cancer cells, we found that prolactin-JAK2-STAT5 induces expression of the HSP90A gene, which encodes the master chaperone of cancer. This identifies one mechanism by which prolactin contributes to breast cancer. Increased expression of HSP90A in breast cancer is correlated with increased cell survival and poor prognosis and HSP90α inhibitors are being tested in clinical trials as a breast cancer treatment. Our results also indicate that HSP90α promotes survival depending on the cellular conditions and state of cellular transformation

    Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial.

    Get PDF
    BACKGROUND: Remote ischaemic conditioning with transient ischaemia and reperfusion applied to the arm has been shown to reduce myocardial infarct size in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI). We investigated whether remote ischaemic conditioning could reduce the incidence of cardiac death and hospitalisation for heart failure at 12 months. METHODS: We did an international investigator-initiated, prospective, single-blind, randomised controlled trial (CONDI-2/ERIC-PPCI) at 33 centres across the UK, Denmark, Spain, and Serbia. Patients (age >18 years) with suspected STEMI and who were eligible for PPCI were randomly allocated (1:1, stratified by centre with a permuted block method) to receive standard treatment (including a sham simulated remote ischaemic conditioning intervention at UK sites only) or remote ischaemic conditioning treatment (intermittent ischaemia and reperfusion applied to the arm through four cycles of 5-min inflation and 5-min deflation of an automated cuff device) before PPCI. Investigators responsible for data collection and outcome assessment were masked to treatment allocation. The primary combined endpoint was cardiac death or hospitalisation for heart failure at 12 months in the intention-to-treat population. This trial is registered with ClinicalTrials.gov (NCT02342522) and is completed. FINDINGS: Between Nov 6, 2013, and March 31, 2018, 5401 patients were randomly allocated to either the control group (n=2701) or the remote ischaemic conditioning group (n=2700). After exclusion of patients upon hospital arrival or loss to follow-up, 2569 patients in the control group and 2546 in the intervention group were included in the intention-to-treat analysis. At 12 months post-PPCI, the Kaplan-Meier-estimated frequencies of cardiac death or hospitalisation for heart failure (the primary endpoint) were 220 (8·6%) patients in the control group and 239 (9·4%) in the remote ischaemic conditioning group (hazard ratio 1·10 [95% CI 0·91-1·32], p=0·32 for intervention versus control). No important unexpected adverse events or side effects of remote ischaemic conditioning were observed. INTERPRETATION: Remote ischaemic conditioning does not improve clinical outcomes (cardiac death or hospitalisation for heart failure) at 12 months in patients with STEMI undergoing PPCI. FUNDING: British Heart Foundation, University College London Hospitals/University College London Biomedical Research Centre, Danish Innovation Foundation, Novo Nordisk Foundation, TrygFonden

    Lateral fenestrations in K+-channels explored using MD simulations

    Get PDF
    Potassium channels are of paramount physiological and pathological importance and therefore constitute significant drug targets. One of the keys to rationalize the way drugs modulate ion channels is to understand the ability of such small molecules to access their respective binding sites, from which they can exert an activating or inhibitory effect. Many computational studies have probed the energetics of ion permeation, and the mechanisms of voltage gating, but little is known about the role of fenestrations as possible mediators of drug entry in potassium channels. To explore the existence, structure, and conformational dynamics of transmembrane fenestrations accessible by drugs in potassium channels, molecular dynamics simulation trajectories were analyzed from three potassium channels: the open state voltage-gated channel Kv1.2, the G protein-gated inward rectifying channel GIRK2 (Kir3.2), and the human two-pore domain TWIK-1 (K2P1.1). The main results of this work were the identification of the sequence identity of four main lateral fenestrations of similar length and with bottleneck radius in the range of 0.9-2.4 Å for this set of potassium channels. It was found that the fenestrations in Kv1.2 and Kir3.2 remain closed to the passage of molecules larger than water. In contrast, in the TWIK-1 channel, both open and closed fenestrations are sampled throughout the simulation, with bottleneck radius shown to correlate with the random entry of lipid membrane molecules into the aperture of the fenestrations. Druggability scoring function analysis of the fenestration regions suggests that Kv and Kir channels studied are not druggable in practice due to steric constraining of the fenestration bottleneck. A high (>50%) fenestration sequence identity was found in each potassium channel subfamily studied, Kv1, Kir3, and K2P1. Finally, the reported fenestration sequence of TWIK-1 compared favorably with another channel, K2P channel TREK-2, reported to possess open fenestrations, suggesting that K2P channels could be druggable via fenestrations, for which we reported atomistic detail of the fenestration region, including the flexible residues M260 and L264 that interact with POPC membrane in a concerted fashion with the aperture and closure of the fenestrations
    corecore