58 research outputs found

    Comparative transcriptomics and proteomics of p-hydroxybenzoate producing Pseudomonas putida S12: novel responses and implications for strain improvement

    Get PDF
    A transcriptomics and proteomics approach was employed to study the expression changes associated with p-hydroxybenzoate production by the engineered Pseudomonas putida strain S12palB1. To establish p-hydroxybenzoate production, phenylalanine-tyrosine ammonia lyase (pal/tal) was introduced to connect the tyrosine biosynthetic and p-coumarate degradation pathways. In agreement with the efficient p-hydroxybenzoate production, the tyrosine biosynthetic and p-coumarate catabolic pathways were upregulated. Also many transporters were differentially expressed, one of which—a previously uncharacterized multidrug efflux transporter with locus tags PP1271-PP1273—was found to be associated with p-hydroxybenzoate export. In addition to tyrosine biosynthesis, also tyrosine degradative pathways were upregulated. Eliminating the most prominent of these resulted in a 22% p-hydroxybenzoate yield improvement. Remarkably, the upregulation of genes contributing to p-hydroxybenzoate formation was much higher in glucose than in glycerol-cultured cells

    Mainstreams of Horizontal Gene Exchange in Enterobacteria: Consideration of the Outbreak of Enterohemorrhagic E. coli O104:H4 in Germany in 2011

    Get PDF
    Escherichia coli O104:H4 caused a severe outbreak in Europe in 2011. The strain TY-2482 sequenced from this outbreak allowed the discovery of its closest relatives but failed to resolve ways in which it originated and evolved. On account of the previous statement, may we expect similar upcoming outbreaks to occur recurrently or spontaneously in the future? The inability to answer these questions shows limitations of the current comparative and evolutionary genomics methods.status: publishe

    Amino Acid Usage Is Asymmetrically Biased in AT- and GC-Rich Microbial Genomes.

    Get PDF
    INTRODUCTION: Genomic base composition ranges from less than 25% AT to more than 85% AT in prokaryotes. Since only a small fraction of prokaryotic genomes is not protein coding even a minor change in genomic base composition will induce profound protein changes. We examined how amino acid and codon frequencies were distributed in over 2000 microbial genomes and how these distributions were affected by base compositional changes. In addition, we wanted to know how genome-wide amino acid usage was biased in the different genomes and how changes to base composition and mutations affected this bias. To carry this out, we used a Generalized Additive Mixed-effects Model (GAMM) to explore non-linear associations and strong data dependences in closely related microbes; principal component analysis (PCA) was used to examine genomic amino acid- and codon frequencies, while the concept of relative entropy was used to analyze genomic mutation rates. RESULTS: We found that genomic amino acid frequencies carried a stronger phylogenetic signal than codon frequencies, but that this signal was weak compared to that of genomic %AT. Further, in contrast to codon usage bias (CUB), amino acid usage bias (AAUB) was differently distributed in AT- and GC-rich genomes in the sense that AT-rich genomes did not prefer specific amino acids over others to the same extent as GC-rich genomes. AAUB was also associated with relative entropy; genomes with low AAUB contained more random mutations as a consequence of relaxed purifying selection than genomes with higher AAUB. CONCLUSION: Genomic base composition has a substantial effect on both amino acid- and codon frequencies in bacterial genomes. While phylogeny influenced amino acid usage more in GC-rich genomes, AT-content was driving amino acid usage in AT-rich genomes. We found the GAMM model to be an excellent tool to analyze the genomic data used in this study

    Expression of the Lantibiotic Mersacidin in Bacillus amyloliquefaciens FZB42

    Get PDF
    Lantibiotics are small peptide antibiotics that contain the characteristic thioether amino acids lanthionine and methyllanthionine. As ribosomally synthesized peptides, lantibiotics possess biosynthetic gene clusters which contain the structural gene (lanA) as well as the other genes which are involved in lantibiotic modification (lanM, lanB, lanC, lanP), regulation (lanR, lanK), export (lanT(P)) and immunity (lanEFG). The lantibiotic mersacidin is produced by Bacillus sp. HIL Y-85,54728, which is not naturally competent

    Fitness of Isogenic Colony Morphology Variants of Pseudomonas aeruginosa in Murine Airway Infection

    Get PDF
    Chronic lung infections with Pseudomonas aeruginosa are associated with the diversification of the persisting clone into niche specialists and morphotypes, a phenomenon called ‘dissociative behaviour’. To explore the potential of P. aeruginosa to change its morphotype by single step loss-of–function mutagenesis, a signature-tagged mini-Tn5 plasposon library of the cystic fibrosis airway isolate TBCF10839 was screened for colony morphology variants under nine different conditions in vitro. Transposon insertion into 1% of the genome changed colony morphology into eight discernable morphotypes. Half of the 55 targets encode features of primary or secondary metabolism whereby quinolone production was frequently affected. In the other half the transposon had inserted into genes of the functional categories transport, regulation or motility/chemotaxis. To mimic dissociative behaviour of isogenic strains in lungs, pools of 25 colony morphology variants were tested for competitive fitness in an acute murine airway infection model. Six of the 55 mutants either grew better or worse in vivo than in vitro, respectively. Metabolic proficiency of the colony morphology variant was a key determinant for survival in murine airways. The most common morphotype of self-destructive autolysis did unexpectedly not impair fitness. Transposon insertions into homologous genes of strain PAO1 did not reproduce the TBCF10839 mutant morphotypes for 16 of 19 examined loci pointing to an important role of the genetic background on colony morphology. Depending on the chosen P. aeruginosa strain, functional genome scans will explore other areas of the evolutionary landscape. Based on our discordant findings of mutant phenotypes in P. aeruginosa strains PAO1, PA14 and TBCF10839, we conclude that the current focus on few reference strains may miss modes of niche adaptation and dissociative behaviour that are relevant for the microevolution of complex traits in the wild

    Selection of Salmonella enterica Serovar Typhi Genes Involved during Interaction with Human Macrophages by Screening of a Transposon Mutant Library

    Get PDF
    The human-adapted Salmonella enterica serovar Typhi (S. Typhi) causes a systemic infection known as typhoid fever. This disease relies on the ability of the bacterium to survive within macrophages. In order to identify genes involved during interaction with macrophages, a pool of approximately 105 transposon mutants of S. Typhi was subjected to three serial passages of 24 hours through human macrophages. Mutants recovered from infected macrophages (output) were compared to the initial pool (input) and those significantly underrepresented resulted in the identification of 130 genes encoding for cell membrane components, fimbriae, flagella, regulatory processes, pathogenesis, and many genes of unknown function. Defined deletions in 28 genes or gene clusters were created and mutants were evaluated in competitive and individual infection assays for uptake and intracellular survival during interaction with human macrophages. Overall, 26 mutants had defects in the competitive assay and 14 mutants had defects in the individual assay. Twelve mutants had defects in both assays, including acrA, exbDB, flhCD, fliC, gppA, mlc, pgtE, typA, waaQGP, SPI-4, STY1867-68, and STY2346. The complementation of several mutants by expression of plasmid-borne wild-type genes or gene clusters reversed defects, confirming that the phenotypic impairments within macrophages were gene-specific. In this study, 35 novel phenotypes of either uptake or intracellular survival in macrophages were associated with Salmonella genes. Moreover, these results reveal several genes encoding molecular mechanisms not previously known to be involved in systemic infection by human-adapted typhoidal Salmonella that will need to be elucidated

    Comparative structural bioinformatics analysis of Bacillus amyloliquefaciens chemotaxis proteins within Bacillus subtilis group

    Get PDF
    Chemotaxis is a process in which bacteria sense their chemical environment and move towards more favorable conditions. Since plant colonization by bacteria is a multifaceted process which requires a response to the complex chemical environment, a finely tuned and sensitive chemotaxis system is needed. Members of the Bacillus subtilis group including Bacillus amyloliquefaciens are industrially important, for example, as bio-pesticides. The group exhibits plant growth-promoting characteristics, with different specificity towards certain host plants. Therefore, we hypothesize that while the principal molecular mechanisms of bacterial chemotaxis may be conserved, the bacterial chemotaxis system may need an evolutionary tweaking to adapt it to specific requirements, particularly in the process of evolution of free-living soil organisms, towards plant colonization behaviour. To date, almost nothing is known about what parts of the chemotaxis proteins are subjected to positive amino acid substitutions, involved in adjusting the chemotaxis system of bacteria during speciation. In this novel study, positively selected and purified sites of chemotaxis proteins were calculated, and these residues were mapped onto homology models that were built for the chemotaxis proteins, in an attempt to understand the spatial evolution of the chemotaxis proteins. Various positively selected amino acids were identified in semi-conserved regions of the proteins away from the known active sites

    Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: a prospective cohort study

    No full text
    Purpose: To describe acute respiratory distress syndrome (ARDS) severity, ventilation management, and the outcomes of ICU patients with laboratory-confirmed COVID-19 and to determine risk factors of 90-day mortality post-ICU admission. Methods: COVID-ICU is a multi-center, prospective cohort study conducted in 138 hospitals in France, Belgium, and Switzerland. Demographic, clinical, respiratory support, adjunctive interventions, ICU length-of-stay, and survival data were collected. Results: From February 25 to May 4, 2020, 4643 patients (median [IQR] age 63 [54-71] years and SAPS II 37 [28-50]) were admitted in ICU, with day-90 post-ICU admission status available for 4244. On ICU admission, standard oxygen therapy, high-flow oxygen, and non-invasive ventilation were applied to 29%, 19%, and 6% patients, respectively. 2635 (63%) patients were intubated during the first 24 h whereas overall 3376 (80%) received invasive mechanical ventilation (MV) at one point during their ICU stay. Median (IQR) positive end-expiratory and plateau pressures were 12 (10-14) cmH2O, and 24 (21-27) cmH2O, respectively. The mechanical power transmitted by the MV to the lung was 26.5 (18.6-34.9) J/min. Paralyzing agents and prone position were applied to 88% and 70% of patients intubated at Day-1, respectively. Pulmonary embolism and ventilator-associated pneumonia were diagnosed in 207 (9%) and 1209 (58%) of these patients. On day 90, 1298/4244 (31%) patients had died. Among patients who received invasive or non-invasive ventilation on the day of ICU admission, day-90 mortality increased with the severity of ARDS at ICU admission (30%, 34%, and 50% for mild, moderate, and severe ARDS, respectively) and decreased from 42 to 25% over the study period. Early independent predictors of 90-day mortality were older age, immunosuppression, severe obesity, diabetes, higher renal and cardiovascular SOFA score components, lower PaO2/FiO2 ratio and a shorter time between first symptoms and ICU admission. Conclusion: Among more than 4000 critically ill patients with COVID-19 admitted to our ICUs, 90-day mortality was 31% and decreased from 42 to 25% over the study period. Mortality was higher in older, diabetic, obese and severe ARDS patients.</p

    Clinical characteristics and day-90 outcomes of 4244 ctritically ill adults with COVID-19: a prospective cohort study

    Full text link
    Purpose: To describe acute respiratory distress syndrome (ARDS) severity, ventilation management, and the outcomes of ICU patients with laboratory-confirmed COVID-19 and to determine risk factors of 90-day mortality post-ICU admission. Methods: COVID-ICU is a multi-center, prospective cohort study conducted in 138 hospitals in France, Belgium, and Switzerland. Demographic, clinical, respiratory support, adjunctive interventions, ICU length-of-stay, and survival data were collected. Results: From February 25 to May 4, 2020, 4643 patients (median [IQR] age 63 [54-71] years and SAPS II 37 [28-50]) were admitted in ICU, with day-90 post-ICU admission status available for 4244. On ICU admission, standard oxygen therapy, high-flow oxygen, and non-invasive ventilation were applied to 29%, 19%, and 6% patients, respectively. 2635 (63%) patients were intubated during the first 24 h whereas overall 3376 (80%) received invasive mechanical ventilation (MV) at one point during their ICU stay. Median (IQR) positive end-expiratory and plateau pressures were 12 (10-14) cmH2O, and 24 (21-27) cmH2O, respectively. The mechanical power transmitted by the MV to the lung was 26.5 (18.6-34.9) J/min. Paralyzing agents and prone position were applied to 88% and 70% of patients intubated at Day-1, respectively. Pulmonary embolism and ventilator-associated pneumonia were diagnosed in 207 (9%) and 1209 (58%) of these patients. On day 90, 1298/4244 (31%) patients had died. Among patients who received invasive or non-invasive ventilation on the day of ICU admission, day-90 mortality increased with the severity of ARDS at ICU admission (30%, 34%, and 50% for mild, moderate, and severe ARDS, respectively) and decreased from 42 to 25% over the study period. Early independent predictors of 90-day mortality were older age, immunosuppression, severe obesity, diabetes, higher renal and cardiovascular SOFA score components, lower PaO2/FiO2 ratio and a shorter time between first symptoms and ICU admission. Conclusion: Among more than 4000 critically ill patients with COVID-19 admitted to our ICUs, 90-day mortality was 31% and decreased from 42 to 25% over the study period. Mortality was higher in older, diabetic, obese and severe ARDS patients

    Draft Genome Sequence of Bacillus endophyticus 2102

    No full text
    • …
    corecore