386 research outputs found

    The endogenous caspase-8 inhibitor c-FLIPL regulates ER morphology and crosstalk with mitochondria

    Get PDF
    Components of the death receptors-mediated pathways like caspase-8 have been identified in complexes at intracellular membranes to spatially restrict the processing of local targets. In this study, we report that the long isoform of the cellular FLICE-inhibitory protein (c-FLIPL), a well- known inhibitor of the extrinsic cell death initiator caspase-8, localizes at the endoplasmic reticulum (ER) and mitochondria-associated membranes (MAMs). ER morphology was disrupted and ER Ca2+-release as well as ER-mitochondria tethering were decreased in c-FLIP-/- mouse embryonic fibroblasts (MEFs). Mechanistically, c-FLIP ablation resulted in enhanced basal caspase-8 activation and in caspase-mediated processing of the ER-shaping protein reticulon-4 (RTN4) that was corrected by re-introduction of c-FLIPL and caspase inhibition, resulting in the recovery of a normal ER morphology and ER-mitochondria juxtaposition. Thus, the caspase-8 inhibitor c-FLIPL emerges as a component of the MAMs signaling platforms, where caspases appear to regulate ER morphology and ER-mitochondria crosstalk by impinging on ER-shaping proteins like the RTN4

    Mechanism and timing of Mcm2–7 ring closure during DNA replication origin licensing

    Get PDF
    The opening and closing of two ring-shaped Mcm2-7 DNA helicases is necessary to license eukaryotic origins of replication, although the mechanisms controlling these events are unclear. The origin-recognition complex (ORC), Cdc6 and Cdt1 facilitate this process by establishing a topological link between each Mcm2-7 hexamer and origin DNA. Using colocalization single-molecule spectroscopy and single-molecule Förster resonance energy transfer (FRET), we monitored ring opening and closing of Saccharomyces cerevisiae Mcm2-7 during origin licensing. The two Mcm2-7 rings were open during initial DNA association and closed sequentially, concomitant with the release of their associated Cdt1. We observed that ATP hydrolysis by Mcm2-7 was coupled to ring closure and Cdt1 release, and failure to load the first Mcm2-7 prevented recruitment of the second Mcm2-7. Our findings identify key mechanisms controlling the Mcm2-7 DNA-entry gate during origin licensing, and reveal that the two Mcm2-7 complexes are loaded via a coordinated series of events with implications for bidirectional replication initiation and quality control.National Institutes of Health (U.S.) (Grant R01 GM52339)National Institutes of Health (U.S.) (Pre-Doctoral Training Grant GM007287)National Cancer Institute (U.S.) (Koch Institute Support Grant P30-CA14051

    Shortcuts to adiabaticity in a time-dependent box

    Full text link
    A method is proposed to drive an ultrafast non-adiabatic dynamics of an ultracold gas trapped in a box potential. The resulting state is free from spurious excitations associated with the breakdown of adiabaticity, and preserves the quantum correlations of the initial state up to a scaling factor. The process relies on the existence of an adiabatic invariant and the inversion of the dynamical self-similar scaling law dictated by it. Its physical implementation generally requires the use of an auxiliary expulsive potential analogous to those used in soliton control. The method is extended to a broad family of many-body systems. As illustrative examples we consider the ultrafast expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in different dimensions, where the method exhibits an excellent robustness against different regimes of interactions and the features of an experimentally realizable box potential.Comment: 6 pp, 4 figures, typo in Eq. (6) fixe

    Knowledge based identification of essential signaling from genome-scale siRNA experiments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A systems biology interpretation of genome-scale RNA interference (RNAi) experiments is complicated by scope, experimental variability and network signaling robustness. Over representation approaches (ORA), such as the Hypergeometric or z-score, are an established statistical framework used to associate RNA interference effectors to biologically annotated gene sets or pathways. These methods, however, do not directly take advantage of our growing understanding of the interactome. Furthermore, these methods can miss partial pathway activation and may be biased by protein complexes. Here we present a novel ORA, protein interaction permutation analysis (PIPA), that takes advantage of canonical pathways and established protein interactions to identify pathways enriched for protein interactions connecting RNAi hits.</p> <p>Results</p> <p>We use PIPA to analyze genome-scale siRNA cell growth screens performed in HeLa and TOV cell lines. First we show that interacting gene pair siRNA hits are more reproducible than single gene hits. Using protein interactions, PIPA identifies enriched pathways not found using the standard Hypergeometric analysis including the FAK <it>cytoskeletal remodeling pathway</it>. Different branches of the <it>FAK </it>pathway are distinctly essential in HeLa versus TOV cell lines while other portions are uneffected by siRNA perturbations. Enriched hits belong to protein interactions associated with cell cycle regulation, anti-apoptosis, and signal transduction.</p> <p>Conclusion</p> <p>PIPA provides an analytical framework to interpret siRNA screen data by merging biologically annotated gene sets with the human interactome. As a result we identify pathways and signaling hypotheses that are statistically enriched to effect cell growth in human cell lines. This method provides a complementary approach to standard gene set enrichment that utilizes the additional knowledge of specific interactions within biological gene sets. </p

    Effect of temporary cements on the shear bond strength of luting cements

    Get PDF
    OBJECTIVE: The purpose of this study was to evaluate, by shear bond strength (SBS) testing, the influence of different types of temporary cements on the final cementation using conventional and self-etching resin-based luting cements. Material and Methods: Forty human teeth divided in two halves were assigned to 8 groups (n=10): I and V (no temporary cementation); II and VI: Ca(OH)2-based cement; III and VII: zinc oxide (ZO)-based cement; IV and VIII: ZO-eugenol (ZOE)-based cement. Final cementation was done with RelyX ARC cement (groups I to IV) and RelyX Unicem cement (groups V to VIII). Data were analyzed statistically by ANOVA and Tukey's test at 5% significance level. RESULTS: Means were (MPa): I - 3.80 (&plusmn;1.481); II - 5.24 (&plusmn;2.297); III - 6.98 (&plusmn;1.885); IV - 6.54 (&plusmn;1.459); V - 5.22 (&plusmn;2.465); VI - 4.48 (&plusmn;1.705); VII - 6.29 (&plusmn;2.280); VIII - 2.47 (&plusmn;2.076). Comparison of the groups that had the same temporary cementation (Groups II and VI; III and VII; IV and VIII) showed statistically significant difference (p<0.001) only between Groups IV and VIII, in which ZOE-based cements were used. The use of either Ca(OH)2-based (Groups II and VI) or ZO-based (Groups III and VII) cements showed no statistically significant difference (p>0.05) for the different luting cements (RelyX TM ARC and RelyX TM Unicem). The groups that had no temporary cementation (Groups I and V) did not differ significantly from each other either (p>0.05). CONCLUSION: When temporary cementation was done with ZO- or ZOE-based cements and final cementation was done with RelyX ARC, there was an increase in the SBS compared to the control. In the groups cemented with RelyX Unicem, however, the use of a ZOE-based temporary cement affected negatively the SBS of the luting agent used for final cementation

    Biomass Smoke Exposure Is Associated With Gastric Cancer and Probably Mediated Via Oxidative Stress and DNA Damage: A Case-Control Study.

    Get PDF
    PURPOSE: We investigated the association between gastric cancer and environmental and dietary exposures. In addition, we explored probable mechanistic pathways for the influence of biomass smoke on gastric carcinogenesis. PATIENTS AND METHODS: The study was conducted in Lusaka, Zambia. Questionnaires were used to collect data on risk factors, whereas enzyme-linked immunosorbent assays and high-performance liquid chromatography were used to measure biologic exposures. Study data were analyzed using contingency tables and logistic regression. RESULTS: We enrolled 72 patients with gastric adenocarcinoma and 244 controls. Gastric cancer was positively associated with rural residence (odds ratio [OR], 2.9; 95% CI, 1.5 to 5.3), poverty (OR, 4.2; 95% CI, 1.9 to 9.1), and daily consumption of processed meat (OR, 6.4; 95% CI, 1.3 to 32) and negatively associated with consumption of green vegetables (OR, 0.2; 95% CI, 0.1 to 0.5). Gastric cancer was also associated with biomass smoke exposure (OR, 3.5; 95% CI, 1.9 to 6.2; P < .0001), an association that was stronger for intestinal-type cancers (OR, 3.6; 95% CI, 1.5 to 9.1; P = .003). Exposure to biomass smoke in controls was associated with higher urinary levels of 8-isoprostane (P < .0001), 8-hydroxydeoxyguanosine (P = .029), and 1-hydroxypyrene (P = .041). Gastric cancer was not associated with biochemical measures of current exposure to aflatoxins or ochratoxins. CONCLUSION: In Zambia, exposure to biomass smoke, daily consumption of processed meat, and poverty are risk factors for gastric cancer, whereas daily consumption of green vegetables is protective against gastric cancer. Exposure to biomass smoke was associated with evidence of oxidative stress and DNA damage, suggesting mechanistic plausibility for the observed association, and the association was restricted to intestinal-type gastric cancer

    Modulation of extracellular matrix by nutritional hepatotrophic factors in thioacetamide-induced liver cirrhosis in the rat

    Get PDF
    Nutritional substances associated to some hormones enhance liver regeneration when injected intraperitoneally, being denominated hepatotrophic factors (HF). Here we verified if a solution of HF (glucose, vitamins, salts, amino acids, glucagon, insulin, and triiodothyronine) can revert liver cirrhosis and how some extracellular matrices are affected. Cirrhosis was induced for 14 weeks in 45 female Wistar rats (200 mg) by intraperitoneal injections of thioacetamide (200 mg/kg). Twenty-five rats received intraperitoneal HF twice a day for 10 days (40 mL·kg-1·day-1) and 20 rats received physiological saline. Fifteen rats were used as control. The HF applied to cirrhotic rats significantly: a) reduced the relative mRNA expression of the genes: Col-&#945;1 (-53%), TIMP-1 (-31.7%), TGF-&#946;1 (-57.7%), and MMP-2 (-41.6%), whereas Plau mRNA remained unchanged; b) reduced GGT (-43.1%), ALT (-17.6%), and AST (-12.2%) serum levels; c) increased liver weight (11.3%), and reduced liver collagen (-37.1%), regenerative nodules size (-22.1%), and fibrous septum thickness. Progranulin protein (immunohistochemistry) and mRNA (in situ hybridization) were found in fibrous septa and areas of bile duct proliferation in cirrhotic livers. Concluding, HF improved the histology and serum biochemistry of liver cirrhosis, with an important reduction of interstitial collagen and increased extracelullar matrix degradation by reducing profibrotic gene expression

    Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis

    Get PDF
    Lipid rafts are envisaged as lateral assemblies of specific lipids and proteins that dissociate and associate rapidly and form functional clusters in cell membranes. These structural platforms are not confined to the plasma membrane; indeed lipid microdomains are similarly formed at subcellular organelles, which include endoplasmic reticulum, Golgi and mitochondria, named raft-like microdomains. In addition, some components of raft-like microdomains are present within ER-mitochondria associated membranes. This review is focused on the role of mitochondrial raft-like microdomains in the regulation of cell apoptosis, since these microdomains may represent preferential sites where key reactions take place, regulating mitochondria hyperpolarization, fission-associated changes, megapore formation and release of apoptogenic factors. These structural platforms appear to modulate cytoplasmic pathways switching cell fate towards cell survival or death. Main insights on this issue derive from some pathological conditions in which alterations of microdomains structure or function can lead to severe alterations of cell activity and life span. In the light of the role played by raft-like microdomains to integrate apoptotic signals and in regulating mitochondrial dynamics, it is conceivable that these membrane structures may play a role in the mitochondrial alterations observed in some of the most common human neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Huntington's chorea and prion-related diseases. These findings introduce an additional task for identifying new molecular target(s) of pharmacological agents in these pathologies
    • …
    corecore