12 research outputs found

    Estudio del efecto solvatocrómico en derivados fenólicos naturales

    Get PDF
    Se describen las características espectrofluorimétricas de dos derivados de quercetina aislados de las hojas deFlaveria bidentis, un derivado de 6-prenilpinocembrina, aislado de las raíces de Dalea elegans y un compuesto deestructura antraquinónica aislado de las hojas de Heterophyllaea pustulata. Todos ellos presentan espectros deabsorción con máximos en la región UV-visible acordes con los grupos cromóforos presentes en su estructura. Loscuatro compuestos estudiados presentan fluorescencia nativa. La posición de los máximos de emisión de fluorescenciase modifica en función del disolvente. Los desplazamientos producidos están relacionados con el diferente gradode solvatación de las moléculas en estado excitado según la polaridad del disolvente. La adición de ácidos mineralesprovoca desplazamientos en los máximos de fluorescencia concordantes con los ya descritos para compuestos deestructura similar. Estas modificaciones espectrales tienen un gran interés analítico desde el punto de vista de laidentificación y caracterización de productos naturales de estructura fenólica

    Correlation of trans-Lycopene Measurements by the HPLC Method with the Optothermal and Photoacoustic Signals and the Color Readings of Fresh Tomato Homogenates

    Get PDF
    The trans-lycopene content of fresh tomato homogenates was assessed by means of the laser photoacoustic spectroscopy, the laser optothermal window, micro-Raman spectroscopy, and colorimetry; none of these methods require the extraction from the product matrix prior to the analysis. The wet chemistry method (high-performance liquid chromatography) was used as the absolute quantitative method. Analytical figures of merit for all methods were compared statistically; best linear correlation was achieved for the chromaticity index a* and chroma C*

    Assessment of the Bioactive Compounds, Color, and Mechanical Properties of Apricots as Affected by Drying Treatment

    Full text link
    Consumer acceptance of dried apricots depends on them having an intense orange color, a gummy texture, and a characteristic flavor. In addition, the growing demand for healthy and nutritive foods has increased the interest in this product, as apricot fruits can be considered a good source of phytochemicals, such as polyphenols, carotenoids, and vitamins. Microwave energy may be an interesting drying method, an alternative to conventional sun or hot air drying, with which to obtain dried apricots with good sensorial, nutritive, and functional properties in a shorter time. This paper aims to evaluate the effect of sulfur pretreatment and the drying process (hot air and/or microwaves) on the color, mechanical properties, and ascorbic acid, vitamins A and E, and total carotenoid content of apricot. The obtained results mean that the use of microwave energy, either in combination or not with mild-hot air, may be recommended to obtain dried apricots, without needing to apply sulfur pretreatment.The authors wish to thank the Education and Science Ministry and the European Regional Development Fund (FEDER) for the financial support given throughout the Project AGL2005-05994.García Martínez, EM.; Igual Ramo, M.; Martín-Esparza, M.; Martínez Navarrete, N. (2013). Assessment of the Bioactive Compounds, Color, and Mechanical Properties of Apricots as Affected by Drying Treatment. Food and Bioprocess Technology. 6(11):3247-3255. https://doi.org/10.1007/s11947-012-0988-1S32473255611Adams, J. B. (1997). Food additive–additive interactions involving sulphur dioxide and ascorbic and nitrous acids: A review. Food Chemistry, 59(3), 401–409.Akin, E. B., Karabulut, I., & Topcu, A. (2008). Some compositional properties of main Malatya apricot Prunus armeniaca L. varieties. Food Chemistry, 107, 939–948.AOAC (2000) Official methods of analysis (17th ed.). Gaithersburg: AOAC.Azodanlou, R., Darbellay, C., Luisier, J., Villettaz, J., & Amadò, R. (2003). Development of a model for quality assessment of tomatoes and apricots. LWT- Food Science and Technology, 36(2), 223–233.Contreras, C., Martín-Esparza, M. E., Martínez-Navarrete, N., & Chiralt, A. (2005). Effect of vacuum impregnation and microwave application on structural changes which occurred during air-drying of apple. Lebensmittel-Wissenschaft und Technologie, 38, 471–477.Doymaz, I. (2004). Effect of pre-treatments using potassium metabisulphide and alkaline ethyl oleate on the drying kinetics of apricots. Biosystems Engineering, 89(3), 281–287.Dragovic-Uzelac, V., Levaj, B., Mrkic, V., Bursac, D., & Boras, M. (2007). The content of polyphenols and carotenoids in three apricot cultivars depending on stage of maturity and geographical region. Food Chemistry, 102(3), 966–975.El Halouat, A., & Labuza, T. P. (1987). Air drying characteristics of apricots. Journal of Food Science, 52, 342–345.Femenia, A., Sánchez, E. S., Simal, S., & Rosselló, C. (1998). Developmental and ripening-related effects on the cell wall of apricot (Prunus armeniaca) fruit. Journal of the Science of Food and Agriculture, 77, 487–493.Funebo, T., & Ohlsson, T. (1998). Microwave assisted air dehydration of apple and mushroom. Journal of Food Engineering, 38, 353–367.Glüçü, K., Altun, M., Ozyurek, M., Karademir, S. E., & Apak, R. (2006). Antioxidant capacity of fresh, sun- and sulphited-dried Malatya apricot assayed by CUPRAC, ABTS/TEAC and folin methods. International Journal of Food Science and Technology, 41(S1), 76–85.Gregory, I. F. (1993). Vitamins. In O. Fennema (Ed.), Food chemistry (3rd ed., pp. 531–616). New York: Marcel Dekker.Halliwell, B. (1994). Free radical antioxidants in human disease. Curiosity, cause or consequence. Lancet, 344, 72–74.Jiménez, M., Martínez-Tomé, M., Egea, I., Romojaro, F., & Murcia, M. A. (2008). Effect of industrial processing and storage on antioxidant activity of apricot. European Food Research and Technology, 227(1), 125–134.Kamişli, F., & Karatas, F. (2009). Effects of sulphurisation on vitamins (A, C and E) and malondialdehyde in apricots. International Journal of Food Science and Technology, 44, 987–993.Karabulut, I., Topcu, A., Duran, A., Turan, S., & Ozturk, B. (2007). Effect of hot air drying and sun drying on color values and β-carotene content of apricot (Prunus armeniaca L.). Lebensmittel-Wissenschaft und Technologie, 40, 753–758.Karatas, F., & Kamişli, F. (2007). Variations of vitamins (A, C and E) and MDA in apricots dried in IR and microwave. Journal of Food Engineering, 78, 662–668.Kevers, C., Falkowski, M., Tabart, J., Defraigne, J. O., Dommes, J., & Pincemail, J. (2007). Evolution of antioxidant capacity during storage of selected fruits and vegetables. Journal of Agricultural and Food Chemistry, 55, 8596–8603.Krinsky, N. I. (1989). Carotenoids and cancer in animal models. Journal of Nutrition, 119, 123–126.Kritchevsky, D. (1992). Antioxidant vitamins in the prevention of cardiovascular disease. Nutrition Today, 27, 30–33.Leccese, A., Bartolini, S., & Viti, R. (2008). Total antioxidant capacity and phenolics content in fresh apricots. Acta Alimentaria, 37(1), 65–76.Leong, S. Y., & Oey, I. (2012). Effects of processing on anthocyanins, carotenoids and vitamin C in summer fruits and vegetables. Food Chemistry, 133(4), 1577–1587.Lo Voi, A., Impembo, M., Fasanaro, G., & Castaldo, D. (1994). Chemical characterization of apricot puree. Journal of Food Composition and Analysis, 8, 78–85.Madrau, M. A., Piscopo, A., Sanguinetti, A. M., Del Caro, A., Poiana, M., Romeo, F. V., et al. (2009). Effect of drying temperature on polyphenolic content and antioxidant activity of apricots. European Food Research and Technology, 228, 441–448.Mahmutoğlu, T., Saygi, Y. B., Borcakli, M., & Özay, G. (1996). Effects of pretreatment–drying method combinations on the drying rates, quality and storage stability of apricots. Lebensmittel-Wissenschaft und Technologie, 29, 118–121.Meléndez-Martínez A.J., Vicario I.M., Heredia F.J. (2004) Estabilidad de los pigmentos carotenoides en los alimentos. Archivos Latinoamericanos de Nutrición (ALAN), publicación oficial de la Sociedad Latinoamericana de Nutrición (SLAN), 54(2), 149–154.Mezzetti, A., Lapenna, D., Pierdomenico, S. D., Calafiore, A. M., Constantini, F., Riario-Sforza, G., et al. (1995). Vitamin E, C and lipid peroxidation in plasma and arterial tissue of smokers and non-smokers. Atherosclerosis, 112, 91–99.Mir, M. A., Hussain, P. R., Fouzia, S., & Rather, A. H. (2009). Effect of sulphiting and drying methods on physicochemical and sensorial quality of dried apricots during ambient storage. International Journal of Food Science and Technology, 44, 1157–1166.Munzuroğlu, O., Karatas, F., & Geckil, H. (2003). The vitamin and selenium contents of apricot fruit of different varieties cultivated in different geographical regions. Food Chemistry, 83, 205–212.Olives, A. I., Cámara, M., Sánchez, M. C., Fernández, V., & López, M. (2006). Application of a UV–vis detection-HPLC method for a rapid determination of lycopene and β-carotene in vegetables. Food Chemistry, 95, 328–336.Ozkan, M., & Cemeroglu, B. (2002). Desulfiting dried apricots by hydrogen peroxide. Journal of Food Science, 67, 1631–1635.Piga, A., Poiana, M., Pinna, I., Agabbio, M., & Minciane, A. (2004). Drying performance of five Italian apricot cultivars. Sciencies des Aliments, 24, 247–259.Roos, Y. H., Roininen, K., Jouppila, K., & Tuorila, H. (1998). Glass transition and water plasticization effects on crispness of a snack food extrudate. International Journal of Food Properties, 1, 163–180.Ruiz, D., Egea, J., Gil, M. I., & Tomás-Barberán, F. A. (2005). Carotenoids from new apricot Prunus armeniaca L. varieties and their relationship with flesh and skin colour. Journal of Agricultural and Food Chemistry, 53, 6368–6374.Ryley, J., & Kajda, P. (1994). Vitamins in thermal processing. Food Chemistry, 49(2), 119–129.Sharma, G., & Prasad, S. (2001). Drying of garlic (Allium sativum) cloves by microwave–hot air combination. Journal of Food Engineering, 50, 99–105.Stryer, L. (1995). Biochemistry (4th ed., pp. 452–455). New York: W.H. Freeman and Company.Torreggiani D., Forni D., Maestrelli A., Quadri F. (1998). Influence of osmotic dehydration on texture and pectic composition of kiwifruit slices. In: Proceedings of the 11th International Drying Symposium (IDS098), vol. A, pp. 930–937, 19–22 August 1998, Halkidiki, Greece.Vadivambal, R., & Jayas, D. S. (2007). Changes in quality of microwave-treated agricultural products—A review. Biosystems Engineering, 98, 1–16.Velu, V., Nagender, A., Prabhakara Rao, P. G., & Rao, D. G. (2006). Dry milling characteristics of microwave dried maize grains. Journal of Food Engineering, 74(1), 30–36.Xu, G., Liu, D., Chen, J., Ye, X., Ma, Y., & Shi, J. (2008). Juice components and antioxidant capacity of citrus varieties cultivated in China. Food Chemistry, 106, 545–551.Ziegler, R. G. (1989). A review of epidemiologic evidence that carotenoids reduce the risk of cancer. Journal of Nutrition, 119, 116–122

    Implication of water activity on the bioactive compounds and physical properties of cocona (Solanum sessiliflorum Dunal) chips

    Full text link
    The effect of water activity on the quality parameters of cocona chips obtained by a combined osmotic dehydration and hot air-drying method has been studied. Applying the combined treatment resulted in a product with 0.055± 0.005 g water/g product in 4.3 h of drying. Although this treatment caused a significant decrease (p<0.05) in the bioactive compounds analyzed, the antioxidant activity of the samples remained stable compared to fresh fruit. The applied treatment permitted the development of a sweet, crispy snack with acceptable optical and mechanical properties. To evaluate the stability of the cocona chips during storage, the water sorption behaviour (20 °C) and the relationship between the water content, water activity and the glass transition were also studied. Results showed that in order to ensure the functional quality preservation of cocona chips during long-term storage and avoid the crispness loss, the glassy state of the amorphous matrix must be guaranteed.The authors thank the Universidad Politecnica de Valencia for the financial support given throughout the Projects ADSIDEO-COOPERACION 2010 "Adaptacion de procesos de secado para favorecer la comercializacion de superfrutas de origen colombiano" and ADSIDEO-COOPERACION 2012 "Contribucion a la mejora del estado nutricional en poblaciones infantiles rurales del departamento del Choco a partir de materias primas de uso tradicional".Agudelo-Sterling, C.; Igual Ramo, M.; Moraga Ballesteros, G.; Martínez Navarrete, N. (2015). Implication of water activity on the bioactive compounds and physical properties of cocona (Solanum sessiliflorum Dunal) chips. Food and Bioprocess Technology. 9(1):167-171. doi:10.1007/s11947-015-1611-zS16717191Acevedo, N., Schebor, C., & Buera, M. P. (2006). Water-solids interactions, matrix structural properties and the rate of non-enzymatic browning. Journal of Food Engineering, 77, 1108–1115.Ahmed, J., & Ramaswany, H. S. (2006). Physico-chemical properties of commercial date pastes (Phoenix dactylifera). Journal of Food Engineering, 76, 348–352.Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of American Chemistry Society, 60, 309–320.Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a theory of the van de Waals adsorption of gases. Journal of American Chemistry Society, 62, 1723–1732.Cardona Jaramillo, J. (2011). Estudio de metabolitos fijos y volátiles en tres morfotipos de cocona (Solanum sessillioflorum Dunal) procedentes del departamento del Guaviare. Tesis de grado para optar al título de Master en Ciencias-Química. Colombia: UNAL.Cardoso, P. C., Tomazini, A. P. B., Stringheta, P. C., Ribeiro, S. M. R., & Pinheiro-Sant’Ana, H. M. (2011). Vitamin C and carotenoids in organic and conventional fruits grown in Brazil. Food chemistry, 126, 411–416.Cen, H., Bao, Y., He, Y., & Sun, D. W. (2007). Visible and near infrared spectroscopy for rapid detection of citric and tartaric acids in orange juice. Journal of Food Engineering, 82, 253–260.Chen, J. P., Tai, C. Y., & Chen, B. H. (2007). Effects of different drying treatments on the stability of carotenoids in Taiwanese mango (Mangifera indica L.). Food Chemistry, 100, 1005–1010.Contreras, C., Martín-Esparza, M. E., Martínez-Navarrete, N., & Chiralt, A. (2006). Influence of osmotic pre-treatment and microwave application on properties of air dried strawberry related to structural changes. European Food Research and Technology, 224, 499–504.Contreras-Calderón, J., Calderón-Jaimes, L., Guerra-Hernández, E., & García-Villanova, B. (2011). Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Research International, 44, 2047–2053.De la Rosa, L., Alvarez-Parrilla, E., & González-Aguilar, G. (2010). Fruit and vegetable phytochemicals chemistry, nutritional value, and stability. Iowa: Blackwell Publishing.Deepa, N., Kaura, C., George, B., Singh, B., & Kapoor, H. (2007). Antioxidant constituents in some sweet pepper (Capsicum annuum L.) genotypes during maturity. LWT: Food Science and Technology, 40(1), 121–129.Díaz Correa, J., & Cancino Chávez, K. (2007). Estudio de la cinética de degradación térmica de textura y su aplicación en el tratamiento térmico de la cocona (Solanum sessiliflorun Dunal) en almíbar. Revista Ingeniería UC, 14(3), 57–67.Falade, K. O., Igbeka, J. C., & Ayanwuyi, F. A. (2007). Kinetics of mass transfer, and colour changes during osmotic dehydration of watermelon. Journal of Food Engineering, 80, 979–985.Gabas, A. L., Telis, V. R. N., Sobral, P. J. A., & Telis-Romero, J. (2007). Effect of maltodextrin and arabic gum in water vapor sorption thermodynamic properties of vacuum dried pineapple pulp powder. Journal of Food Engineering, 82, 246–252.García, C. C., Mauro, M. A., & Kimura, M. (2007). Kinetics of osmotic dehydration and air-drying of pumpkins (Cucurbita mostacha). Journal of Food Engineering, 82, 284–291.García-Martínez, E., Martínez-Monzó, J., Camacho, M. M., & Martínez-Navarrete, N. (2002). Characterisation of reused osmotic solution as ingredient in new product formulation. Food Research International, 35, 307–313.Gordon, M., & Taylor, J. S. (1952). Ideal copolymers and second-order transitions of synthetics rubbers. I. Non-crystalline copolymers. Journal of Applied Chemistry, 2, 493–500.Greenspan, L. (1977). Humidity fixed point of binary saturated aqueous solutions. Journal of Research of the National Bureau of Standards, 81, 89–96.Hutchings, J. B. (1999). Food color and appearance. Gaithersburg, MD: Aspen Publishers.Igual, M., Castelló, M. L., Roda, E., & Ortolá, M. D. (2011). Development of hot-air dried cut persimmon. International Journal of Food Engineering, 7(5), 1556–3758.Igual. M, García-Martínez, M. E. Martín-Esparza, N. & Martínez-Navarrete. (2012). Effect of processing on the drying kinetics and functional value of dried apricot. Food Research International, 47, 284–290.Krokida, M., & Maroulis, Z. (2000). Quality changes during drying of food materials. In A. S. Mujumdar (Ed.), Drying technology in agriculture and food sciences (pp. 61–98). Enfield, NH: Science Publishers.Labuza, T. P. (1984). Moisture sorption: practical aspects of isotherm measurement and use. St. Paul, MN: AACC International Publishing.Maltini. E, Torreggiani. D, Venir. E, & Bertolo. (2003). Water activity and the preservation of plant foods. Food Chemistry, 82, 79–86.Manzocco, L., Calligaris, S., Mastrocola, D., Nicoli, M. C., & Lerici, C. R. (2000). Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends in Food Science and Technology, 11, 340–346.Martínez-Navarrete, N., Moraga, G., Talens, P., & Chiralt, A. (2004). Water sorption and the plasticization effect in wafers. International Journal of Food Science and Technology, 69, 555–562.Miranda, M., Vega-Gálvez, A., Lopez, J., Parada, G., Sanders, M., Aranda, M., Uribe, E., & Di Scalad, K. (2010). Impact of air-drying temperature on nutritional properties, total phenolic content and antioxidant capacity of quinoa seeds (Chenopodium quinoa Willd.). Industrial Crops and Products, 32, 258–263.Moraga, G., Martínez-Navarrete, N., & Chiralt, A. (2004). Water sorption isotherms and glass transition in strawberries: influence of pretreatment. Journal of Food Engineering, 62, 315–321.Moraga, G., Martínez-Navarrete, N., & Chiralt, A. (2006). Water sorption isotherms and phase transitions in kiwifruit. Journal of Food Engineering, 72, 147–156.Moraga, G., Igual, M., García-Martínez, E., Mosquera, L. H., & Martínez-Navarrete, N. (2012). Effect of relative humidity and storage time on the bioactive compounds and functional properties of grapefruit powder. Journal of Food Engineering, 112, 191–199.Moraga, G., Talens, P., Moraga, M. J., & Martínez-Navarrete, N. (2011). Implication of water activity and glass transition on the mechanical and optical properties of freeze-dried apple and banana slices. Journal of Food Engineering, 106, 212–219.Mosquera, L. H., Moraga, G., Fernández de Córdoba, P., & Martínez-Navarrete, N. (2011). Water content–water activity–glass transition temperature relationships of spray-dried Borojó as related to changes in color and mechanical properties. Food Biophysics, 6, 397–406.Munzuroglu, O., Karatas, F., & Geckil, H. (2003). The vitamin and selenium contents of apricot fruit of different varieties cultivated in different geographical regions. Food Chemistry, 83, 205–212.Murillo, E., Meléndez-Martínez, A. J., & Portugal, F. (2010). Screening of vegetables and fruits from Panama for rich sources of lutein and zeaxanthin. Food Chemistry, 122, 167–172.Nicoli, M. C., Anese, M., Parpinel, M. T., Franceschi, S., & Lerici, C. R. (1997). Loss and/or formation of antioxidants during food processing and storage. Cancer Letters, 114, 71–74.Olives Barba, A. I., Cámara Hurtado, M., Sanchez Mata, M. C., Fernández Ruiz, V., Sáenz, L., & de Tejada, M. (2006). Application of a UV-vis detection-HPLC method for a rapid determination of lycopene and β-carotene in vegetables. Food Chemistry, 95, 328–336.Paredes, D. F. (2010). Evaluación nutricional de Cocona (Solanun sessiliflorum Dunal.) deshidratada por método de bandejas a tres temperaturas. Tesis de grado para la obtención del título Bioquímico Farmaceútico. Escuela Superior Politécnica de Chimborazo. Facultad de Ciencias. Ecuador: Escuela de Bioquímica y Farmacia.Pereira da Silva, D. F., Carlos Rocha, R. H., & Chamhum Salomão, L. C. (2011). Postharvest quality of cocona (Solanum sessiliflorum Dunal) stored under ambient condition. Rev Ceres Viçosa, 58, 476–480.Quijano, C., & Pino, J. (2006). Changes in volatile constituents during the ripening of cocona (Solanum sessiliflorum Dunal) fruit. CENIC, 37(3), 133–136.Roos, Y. H. (1995). Phase transitions in food. San Diego, CA: Academic.Ross, Y. H., Roininen, K., Jouppila, K., & Tuorila, H. (1998). Glass transition and water plasticization effects on crispness of a snack food extrudate. International Journal of Food Properties, 1(2), 163–180.Rozek, A., García-Pérez, J. V., López, F., Güell, C., & Ferrando, M. (2010). Infusion of grape phenolics into fruits and vegetables by osmotic treatment: phenolic stability during air drying. Journal of Food Engineering, 99(2), 142–150.Sánchez-Moreno, C., Plaza, L., De Ancos, B., & Cano, M. P. (2003). Quantitative bioactive compounds assessment and their relative contribution to the antioxidant capacity of commercial orange juices. Journal of the Science of Food and Agriculture, 83, 430–439.Silva Filho, D. F. (1998). Cocona (Solanum sessilioflurum Dunal), cultivo y utilización. Caracas, Venezuela: Tratado de Cooperación Amazónica.Silva Filho, D. F., Yuyama, L. K. O., Aguiar, J. P. L., Oliveira, M. C., & Martins, L. H. P. (2005). Caracterização e avaliação do potencial agronômico e nutricional de etnovariedades de cubiu (Solanum sessiliflorum Dunal) da amazônia. Acta Amazónica, 35(4), 399–406.Slade, L., & Levine, H. (1991). Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. Critical Reviews in Food Science and Nutrition, 30(2–3), 115–360.Spiess, W. E. L., & Wolf, W. R. (1983). The results of the COST 90 Project on water activity. In R. Jowitt, F. Escher, B. Hallstrom, H. F. T. Meffert, W. E. L. Spiess, & G. Vos (Eds.), Physical properties of foods (pp. 65–91). London/New York: Applied Science Publishers.Stahl, W., & Sies, H. (2005). Bioactivity and protective effects of natural carotenoids. Biochimica et Biophysica Acta, 1740, 101–107.Tomás-Barberán, F. A., Gil, M. I., Cremin, P., Waterhouse, A. L., Hess-Pierce, B., & Kader, A. A. (2001). HPLC–DAD–ESIMS analysis of phenolic compounds in nectarines, peaches, and plums. Journal of Agricultural and Food Chemistry, 49, 4748–4760.Torreggiani, D., & Bertolo, G. (2001). Osmotic pre-treatments in fruit processing: chemical, physical and structural effects. Journal of Food Engineering, 49, 247–253.Torres, V. (2010). Determinación del potencial nutritivo y funcional de Guayaba (Psidum guajava L.), cocona (Solanum sessiliflorum Dunal) y camu (Myrciaria dubia Vaugh). Proyecto para la obtención del título de Ingeniera Agroindustrial. Quito: Facultad de Ingeniería Química y Agroindusria.Vashisth, T., Singh, R. K., & Pegg, R. B. (2011). Effects of drying on the phenolics content and antioxidant activity of muscadine pomace. LWT – Food Science and Technology, 44, 1649–1657.Uddin, M. B., Ainsworth, P., & İbanoğlu, Ş. (2004). Evaluation of mass exchange during osmotic dehydration of carrots using response surface methodology. Journal of Food Engineering, 65, 473–477.USDA (2011). National nutrient data base for standard reference, Release 27. Nutrient Data Laboratory Home Page. www.nal.usda.gov . Accessed 2015.Vasco, C., Ruales, J., & Kamal-Eldin, A. (2008). Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chemistry, 111, 816–823.Xu, G., Liu, D., Chen, J., Ye, X., Ma, Y., & Shi, J. (2008). Juice components and antioxidant capacity of citrus varieties cultivated in China. Food Chemistry, 106, 545–551.Yanniotis, S., & Blahovec, J. (2009). Model analysis of sorption isotherms. LWT – Food Science and Technology, 42(10), 1688–1695.Yilmaz, Y., & Toledo, R. (2005). Antioxidant activity of water-soluble. Maillard reaction products. Food Chemistry, 93, 273–278.Yuyama, L. K. O., Macedo, S. H. M., Aguiar, J. P. L., Filho, D. S., Yuyama, K., Fávaro, D. I. T., & Vasconcellos, M. B. A. (2007). Quantificação de macro e micro nutrientes em algumas etnovariedades de cubiu (Solanum sessiliflorum Dunal). Acta Amazónica, 37(3), 425–430.Zou, K., Teng, J., Huang, L., Dai, X., & Baoyao, W. (2013). Effect of osmotic pretreatment on quality of mango chips by explosion puffing drying. LWT – Food Science and Technology, 5, 253–259
    corecore