750 research outputs found

    Thermoelectric effects in quantum dots

    Get PDF
    We report a numerical renormalization-group study of the thermoelectric effect in the single-electron transistor (SET) and side-coupled geometries. As expected, the computed thermal conductance and thermopower curves show signatures of the Kondo effect and of Fano interference. The thermopower curves are also affected by particle-hole asymmetry.Comment: 8 pages with 3 figures; accepted for publication in Physica B (special issue 'Strongly Correlated Electron Systems-SCES2008'

    Production of electroweak bosons in e+e- annihilation at high energies

    Full text link
    Production of electroweak bosons in e+e- annihilation into quarks and into leptons at energies much greater than 100 Gev is considered. We account for double-logarithmic contributions to all orders in electroweak couplings. It is assumed that the bosons are emitted in the multi-Regge kinematics. The explicit expressions for the scattering amplitudes of the process are obtained. It is shown that the cross sections of the photon and Z production have the identical energy dependence and asymptotically their ratio depends only on the Weinberg angle whereas the energy dependence of the cross section of the W production is suppressed by factor s^{-0.4} compared to them.Comment: Revtex4, 16 pages, 7 figures, 2 table

    Reversible flow of cholesteryl ester between high-density lipoproteins and triacylglycerol-rich particles is modulated by the fatty acid composition and concentration of triacylglycerols

    Get PDF
    We determined the influence of fasting (FAST) and feeding (FED) on cholesteryl ester (CE) flow between high-density lipoproteins (HDL) and plasma apoB-lipoprotein and triacylglycerol (TG)-rich emulsions (EM) prepared with TG-fatty acids (FAs). TG-FAs of varying chain lengths and degrees of unsaturation were tested in the presence of a plasma fraction at d > 1.21 g/mL as the source of CE transfer protein. The transfer of CE from HDL to FED was greater than to FAST TG-rich acceptor lipoproteins, 18% and 14%, respectively. However, percent CE transfer from HDL to apoB-containing lipoproteins was similar for FED and FAST HDL. The CE transfer from HDL to EM depended on the EM TG-FA chain length. Furthermore, the chain length of the monounsaturated TG-containing EM showed a significant positive correlation of the CE transfer from HDL to EM (r = 0.81, P < 0.0001) and a negative correlation from EM to HDL (r = -041, P = 0.0088). Regarding the degree of EM TG-FAs unsaturation, among EMs containing C18, the CE transfer was lower from HDL to C18:2 compared to C18:1 and C18:3, 17.7%, 20.7%, and 20%, respectively. However, the CE transfer from EMs to HDL was higher to C18:2 than to C18:1 and C18:3, 83.7%, 51.2%, and 46.3%, respectively. Thus, the EM FA composition was found to be the rate-limiting factor regulating the transfer of CE from HDL. Consequently, the net transfer of CE between HDL and TG-rich particles depends on the specific arrangement of the TG acyl chains in the lipoprotein particle core431211351142FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP95/7662-

    Enhancing methane yield from crude glycerol anaerobic digestion by coupling with ultrasound or A. niger/E. coli biodegradation

    Get PDF
    Anaerobic digestion of crude glycerol from biodiesel production is a feasible way for methane production. However, crude glycerol (CG) contains impurities, such as long-chain fatty acids (LCFA) that can inhibit methanogenic microorganisms. Ultrasound promotes the hydrolysis of LCFA and deagglomerates the microorganisms in biological flocs. Furthermore, Aspergillus niger and Escherichia coli produce lipases capable of degrading LCFA. This study aims at improving the methane yield from anaerobic digestion by coupling with ultrasound or E. coli/A. niger biodegradation. The effect of the different treatments was first assessed in a perfectly mixed batch reactor (PMBR), using diluted CG at concentrations of 0.2%, 1.7%, and 3.2% (v/v). Later, the best conditions were replicated in an upflow anaerobic sludge blanket (UASB) reactor to simulate full-scale practical applications. Experiments in the PMBR showed that ultrasound or A. niger biodegradation steps improved methane yield up to 11% for 0.2% CG and 99% for 1.7% CG, respectively. CG biodegradation by E. coli inhibited the subsequent anaerobic digestion for all concentrations tested. Using a UASB digester, ultrasonic treatment of CG led to an average increase of 29% in methane production. The application of ultrasound led to a lower accumulation of propionic acid in the digested material and increased biogas production. On the other hand, an average 77% increase in methane production was achieved using a preliminary CG biodegradation step by A. niger, when operated at a loading rate of 2.9 kg COD m-3 day-1. Under these conditions, an energy gain of 0.48 kWh day-1, with the production of the 0.434 m3 CH4 kg-1 CODremoval and 0.573 m3 CH4 kg-1 VS, and a biogas quality of 73% in methane were obtained. The digested material was analyzed for the detection and quantification of added-value by-products in order to obtain a broad assessment of the CG valorization through anaerobic digestion. In some experiments, propionic and oxalic acid were detected. However, the accumulation of propionic caused the inhibition of the acetogenic and methanogenic microorganisms.info:eu-repo/semantics/publishedVersio

    A new non-Fermi liquid fixed point

    Full text link
    We study a new exchange interaction in which the conduction electrons with pseudo spin Sc=3/2S_c=3/2 interact with the impurity spin SI=1/2S_I=1/2. Due to the overscreening of the impurity spin by higher conduction electron spin, a new non-trivial intermediate coupling strength fixed point is realized. Using the numerical renormalization group (NRG), we show that the low-energy spectra are described by a non-Fermi liquid excitation spectrum. A conformal field theory analysis is compared with NRG results and excellent agreement is obtained. Using the double fusion rule to generate the operator spectrum with the conformal theory, we find that the specific heat coefficient and magnetic susceptibility will diverge as T−2/3T^{-2/3}, that the scaling dimension of an applied magnetic field is 5/65/6, and that exchange anisotropy is always relevant. We discuss the possible relevance of our work to two-level system Kondo materials and dilute cerium alloys, and we point out a paradox in understanding the Bethe-Ansatz solutions to the multichannel Kondo model.Comment: Revised. 20 page

    Nonuniqueness and derivative discontinuities in density-functional theories for current-carrying and superconducting systems

    Get PDF
    Current-carrying and superconducting systems can be treated within density-functional theory if suitable additional density variables (the current density and the superconducting order parameter, respectively) are included in the density-functional formalism. Here we show that the corresponding conjugate potentials (vector and pair potentials, respectively) are {\it not} uniquely determined by the densities. The Hohenberg-Kohn theorem of these generalized density-functional theories is thus weaker than the original one. We give explicit examples and explore some consequences.Comment: revised version (typos corrected, some discussion added) to appear in Phys. Rev.

    Opposite lipemic response of Wistar rats and C57BL/6 mice to dietary glucose or fructose supplementation

    Get PDF
    The metabolic effects of carbohydrate supplementation in mice have not been extensively studied. In rats, glucose- and fructose-rich diets induce hypertriacylglycerolemia. In the present study, we compared the metabolic responses to two monosaccharide supplementations in two murine models. Adult male Wistar rats (N = 80) and C57BL/6 mice (N = 60), after 3 weeks on a standardized diet, were submitted to dietary supplementation by gavage with glucose (G) or fructose (F) solutions (500 g/L), 8 g/kg body weight for 21 days. Glycemia was significantly higher in rats after fructose treatment (F: 7.9 vs 9.3 mM) and in mice (G: 6.5 vs 10 and F: 6.6 vs 8.9 mM) after both carbohydrate treatments. Triacylglycerolemia increased significantly 1.5 times in rats after G or F supplementation. Total cholesterol did not change with G treatment in rats, but did decrease after F supplementation (1.5 vs 1.4 mM, P < 0.05). Both supplementations in rats induced insulin resistance, as suggested by the higher Homeostasis Model Assessment Index. In contrast, mice showed significant decreases in triacylglycerol (G: 1.8 vs 1.4 and F: 1.9 vs 1.4 mM, P < 0.01) and total cholesterol levels (G and F: 2.7 vs 2.5 mM, P < 0.05) after both monosaccharide supplementations. Wistar rats and C57BL/6 mice, although belonging to the same family (Muridae), presented opposite responses to glucose and fructose supplementation regarding serum triacylglycerol, free fatty acids, and insulin levels after monosaccharide treatment. Thus, while Wistar rats developed features of plurimetabolic syndrome, C57BL/6 mice presented changes in serum biochemical profile considered to be healthier for the cardiovascular system.32333

    Semiclassical Approximation to Neutron Star Superfluidity Corrected for Proximity Effects

    Get PDF
    The inner crust of a neutron star is a superfluid and inhomogeneous system, consisting of a lattice of nuclei immersed in a sea of neutrons. We perform a quantum calculation of the associated pairing gap and compare it to the results one obtains in the Local Density Approximation (LDA). It is found that the LDA overestimates the spatial dependence of the gap, and leads to a specific heat of the system which is too large at low temperatures, as compared with the quantal result. This is caused by the neglect of proximity effects and the delocalized character of the single-particle wavefunctions close to the Fermi energy. It is possible to introduce an alternative, simple semiclassical approximation of the pairing gap which leads to a specific heat that is in good agreement with the quantum calculation.Comment: RevteX, 8 Postscript Figure

    Angiotensin-(1–7)/Mas axis integrity is required for the expression of object recognition memory

    Get PDF
    AbstractIt has been shown that the brain has its own intrinsic renin–angiotensin system (RAS) and angiotensin-(1–7) (Ang-(1–7)) is particularly interesting, because it appears to counterbalance most of the Ang II effects. Ang-(1–7) exerts its biological function through activation of the G-protein-coupled receptor Mas. Interestingly, hippocampus is one of the regions with higher expression of Mas. However, the role of Ang-(1–7)/Mas axis in hippocampus-dependent memories is still poorly understood. Here we demonstrated that Mas ablation, as well as the blockade of Mas in the CA1-hippocampus, impaired object recognition memory (ORM). We also demonstrated that the blockade of Ang II receptors AT1, but not AT2, recovers ORM impairment of Mas-deficient mice. Considering that high concentrations of Ang-(1–7) may activate AT1 receptors, nonspecifically, we evaluate the levels of Ang-(1–7) and its main precursors Ang I and Ang II in the hippocampus of Mas-deficient mice. The Ang I and Ang II levels are unaltered in the whole hipocampus of MasKo. However, Ang-(1–7) concentration is increased in the whole hippocampus of MasKo mice, as well as in the CA1 area. Taken together, our findings suggest that the functionality of the Ang-(1–7)/Mas axis is essential for normal ORM processing
    • …
    corecore