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Nonunigueness and derivative discontinuities in density-functional theories for current-carrying
and superconducting systems
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Current-carrying and superconducting systems can be treated within density-functional theory if suitable
additional density variableghe current density and the superconducting order parameter, respgctixely
included in the density-functional formalism. Here we show that the corresponding conjugate poteatials
and pair potentials, respectivélgre not uniquely determined by the densities. The Hohenberg-Kohn theorem
of these generalized density-functional theories is thus weaker than the original one. We give explicit examples
and explore some consequences.
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Today, density-functional thech(DFT) is an indispens- tigations of the circumstances under which some response
able tool for the investigation of the electronic structure offunction becomes zero.
matter in atomic, molecular, or extended systems. The theory We first consider current-carrying systems. The appropri-
rests on the celebrated Hohenberg-KofiK) theoren? ate formulation ofnonrelativistio DFT is CDFT/*® which is
which guarantees that thev{epresentab)e ground-state based on the many-body Hamiltonigin atomic units, i.e.,
density n(r) uniquely determines the ground-state many-A=e=m=1)
body wave functionyy(rq, ... ry). This theorem on its L
own is a very powerful result, but in the original A - -
formulatior?® of DFT one can prove even more: the external 11— 1 U+ f d*rn(n)[v(r)—ul+ Ef drjp(rA(r)
potentialv(r) (e.g., the nuclear charge distribution in a mol-
ecule or a soligl too, is a functional of the density, and is 1 3.n ) 3~
unique up to an additive constant. Since this external poten- + EJ d*rn(r)A (r)+J d*rm(r)B(r), @
tial in turn determines all eigenstates of the many-body
Hamiltonian, this implies thaall observablesand not only  whereB(r) =V X A(r) is the magnetic fieldy (r) the elec-

ground state ongsare functionals of the ground-state rgstatic one, and andU denote the operators for kinetic-

density. L _ energy and particle-particle interaction, respectively.
Following original ideas of von Barth and Hedirit has The basic variables of CDFT, in terms of which the entire

recently been shown by Eschrig and Pickeihd by the  ground-state physics of the current-carrying many-body sys-

present authofghat in spin-DFT(SDFT) the situation is not  tam is described, am(r), m(r), andj,(r), the ground-state
that simple: while the wave function is still uniquely deter-

mined by the spin densities,(r) and n (r), the external T . . N
potentialsv ;(r) andv (r) [or v(r) andB(r)] are not. This =2,¥,(r)¥,(r), spin-magnetization operatorm(r)
implies that SDFT functionals are not always differentiable,=(1/2c)2, sV, (r)o-\P (r), and (paramagnetic current-
and has far-reaching consequences for the construction @fensity operator
better exchange-correlatidiXC) functionals, and fg% gppli- L
cations to systems such as half-metallic ferromagnhets. a + +

SDFT is not the only instance at which the original HK (1= 37 ; W (NIVE (1= [V, (N]¥,(0},
theorem has been generalized. In the present work we extend )
the analysis of Ref. 6 to two other generalizations of DFT, .
namely, current-DFf® (CDFT) and DFT for where the¥ (r) are field operators and is the vector of
superconductors:*? The discovery of nonuniqueness in Pauli matrices.
these generalized DFTs deepens our understanding of the According to the CDFT version of the HK theorem these
respective XC functionals and flags a warning signal to all-densities uniquely determine the ground-state many-body
too-immediate generalizations of the original HK theorem towave function. However, in striking contrast to conventional
more complex situations. “density only” DFT they donot uniquely determine the po-

The basic physics of nonuniqueness is simple. When &entialsA(r), B(r), andv(r): it is possible to find different
sufficiently small change in one of the external fields does/ector and scalar potentials that yield the same ground state,
not change the corresponding density distribution, the ass@nd consequently the same densiti¢s), m(r), andj(r).
ciated susceptibility vanishes. The search for, and the inter- Before delving into a general characterization of such po-
pretation of, nonuniqueness in DFT is thus guided by investentials, we present a simple example that clearly displays

expectation values of the particle-density operafxr)

0163-1829/2002/63.1)/1131064)/$20.00 65 113106-1 ©2002 The American Physical Society


https://core.ac.uk/display/62765838?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BRIEF REPORTS PHYSICAL REVIEW B 65 113106

the problem. We consider an atom subjected to a unifornkq. (6) is satisfied. By making the coefficients of the linear

magnetic fieldB=Bz, wherez is the unit vector along the ~ combination sufficiently small we can always ensure iat
axis. Ignoring spin-orbit interactions, the Hamiltonian can berémains the ground state of the Hamiltonian with the new

written as potentials(assuming of course that the spectrumibhas a
) gap between its ground state and first excited stdtes is
. p? zZ B*?; 1 L[,+25 the same prescription employed in Ref. 6 to construct ex-
HIZ 5 f_i+ 8c2 & Tij+ 2C B, (3 amples for nonunigueness in SDFT. In the terminology of

that reference nonuniqueness arising from such constants of

wherer? =x2+y?, andi, and$, are thez components of motion is _re_ferred to asystematic nonuniquene_ss
the orbital and spin angular-momentum operatoends. Z As a trivial example of this procedure consider the con-
is the atomic number, specifying the external potential. Botrstant of motiorN = [d® n(r). The existence of this constant
[, andS, are constants of motion, hence tmendegenerate  Of motion tells us thatt v (r) = const,AA(r) =0 is a solution

~ . - s . of Eq. (6). This is the well-known nonuniqueness of the sca-
ground state oH is also an eigenstate &f, and S,, with

) | d fvelv. Th d-etat lar potential with respect to the addition of a constant. Con-
eigenvaluesm, and mg respectively. The ground-state en- i o oo jass trivial example

ergy isEy.
Consider now the same systemglectrons being sub-
jected to a different(but still uniform magnetic fieldB’ LZ:f d3r(2><r)-jAp(r), (7)

=B’z and the external potential
which is a constant of motion in any system that is invariant

v (r)=— z_ iz(B’z— B)r?. (4  under rotations about theaxis. Comparing this with Eq6)
r 8c we immediately see thahA(r)=AB(zxr)/2 and Av(r)
The Hamiltonian of this system is =—[AA(r)]%/(2¢?) with AB=const is indeed a solution of

the posed problem. This is, of course, nothing but a more
.. 1 A formal derivation of the elementary example discussed
H’=H+£(LZ+ZSZ)(B’—B). 5 above.
Another way in which nonuniqueness can arise is by add-
Thus, we immediately see that the ground statél gbr, ing an operator to the Hamiltonian tha_lt, although not a con-
. ) ~ o stant of motion, happens to have eigenvalue zero on the
for that matter, any simultaneous eigenstateHofL,, and  4.4nq state. This was calletcidental nonuniquenesa
S,) is also an eigenstate dfi’ with eigenvalueE’'=E,  Ref. 6. To give an example in CDFT, let,(r) andj,(r)
+(1/2c)(m_+2mg) (B’ —B). Furthermore, if the difference denote the exact spin-resolved ground-state density and para-
B'—B is not too large, this eigenstate will be the groundmagnetic current of a two-electron system, such as the He
state ofH’; the qualitative condition for this to happen is that atom, in the presence of external vector and scalar potentials.
E'—Ey,<Eg whereEg is the energy gap between the first For sufficiently small external fields these densities must
excited state and the ground statefbf Thus, we have suc- arise from the single-particle orbitals,(r) and ¢ (r) that
ceeded in constructing two different sets of potenti#ls, are the Iowest-er_wergy solutions of the spin-dependent Kohn-
=(BXr)/2 andv, andA’ = (B’ Xr)/2 andv’, that yield the ~Sham(KS) equations
same ground state. L 5
Let us now consider the question from a more general . B
point of view. LetA’=A+AA andv'=v+Av be vector §("V+EASU(U) +USa(r)]<Po(r)—60€0g(f), (8)
and scalar potentials that are supposed to yield the same
ground statey, asA andv. A necessary condition for this is whereAg,(r) anduvg,(r) are the KS potentials, defined, as
that ¢ satisfy the eigenvalue equation usual, in terms of the external, Hartree, and exchange-
correlation potentials. The relation between the densities and
J d3r

the single-particle orbitals is,(r)=|¢,(r)|?> and
joo(r)=n,r)Ve,(r), 9
where we neglected, for simplicity, the spin degrees of free- Jpo(1) (NVé(r) ©

dom, because the nonuniqueness associated with them is ghere ¢, (r) is the phase of the complex orbital,(r).*®

. 1. 1,
NAv+ 55 nAAZ+ S IpAA h=AEYy, (6)

ready discussed in Refs. 5 and 6. . . Equation(8) can be rewritten in the form
The general problem at hand is thus to find a linear com-
bination of the density operatorgr) andj,(r) that hasy, 1/ 1 2
as eigenfunction. This problem is not easily solved in gen- > —iV+ E[ASUJF cVool| +tvseilos=esle,l,

eral. It is easy, however, to obtain a particular solution of Eq.
(6) if one can find a linear combination of the density opera-

tors that is a constant of motion. The ground statddols  which has the solution  Ag, (r)=—cVa,(r)
automatically an eigenstate of such a constant of motion, ané —cj,,(r)/n,(r) and

(10
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1 V2| @,(r)| 1 V2n¥4r) operatory in H the particle number operatdy is not a

Vso(N=5 Teun] €72 — - t€. (11)  constant of motion, and we aret free to add an arbitrary
b0 Ny (1) constant to the external potentia{r). In other wordsAD

To determine whether these are the only potentials that re=0, AB=0, andAv =const is not a solution of E¢16) for

produce the given densities,(r) andj,,(r) we assume the @ given . DFT for superconductors thus does not suffer

existence of a second such set of potentialg, (r) from the_ most basic nonuniqueness of gll, that V\_nth respect to

= A, (1) +AA(r) andv e, (1) =ve,(r)+Ave,(r). By sub-  the additive constant in the electrostatic potential.

stituting these back in Eq10) and separating the real and ~ However, DFT for superconductors is not free of non-

the imaginary parts we obtain u_n_iquene_ss. For a singlet superconductor th_e spin suscepti-
bility vanishes at zero temperatufeln the light of our

1 1 v2n2r) physical characterization of nonuniqueness at the beginning

ve(r)+ FAAia(r)= > 1 T (12 of this paper we would thus expect some associated nonu-

¢ ng(r) nigueness. Indeed, this is bourne out by more detailed analy-

andV-[n,(r)AA,,(r)]=0. This last equation follows more sis. IfB= Bz is spatially uniform and sufficiently weak not to
directly from the application of the continuity equation to the break Cooper pairs paramagnetically, th&\=B+ AB,

real solution of Eq.(10). Its general solution iNAg.(r)  whereAB is also weak, uniform, and parallel i has the
=V XQq(r)/n,(r) whereQ,(r) is an arbitrary vector field.  game ground state, because under these circumstihces

Hence, fd3 m, is a conserved quantity, i.e., the superconductor re-
VXQ,(r))?2 mains in a singlet state, with all electrons paired up. Conse-
V(M) =vg,(r)— 2c2 n—(r)> (13)  quently, the set of potentiatw,B,D} is not uniquely deter-
v mined by the conjugate densitigg,m,x}. Since it is
and associated with the constant of motibh,, this issystematic
nonuniqueness the above sense.
Al (1) =Ag(r)+ Vng(r). (14) With these examples we end our list of explicit occur-
7 o n,(r) rences of nonuniqueness in generalized DFTs, and now turn

By construction,A.,(r) and v, (r) are the potentials for o :I':\ndlsegtilssmnaofelr)sroaodner Eg?ﬁ ctégrzgurafrl]rédmg;_r for

which n,(r) andj,,(r) areground-statedensities. IfQ,, is Yy pap X

sufficientl smallpand if the KS system @, =0 has an superconductof one finds the statement that the chosen
y y > densities uniquely determine the corresponding potentials.

energy gap separating the first excited state from the grounBI\S we have shown here, these statements are not accurate

Zt?te"p"(rd) YV'” re_rp;lm tge g;gund dstﬂe n th(;e potgqt(;als and all that is determined uniquely is the ground-state wave
so(r) anduvg,(r). Thus, Eqs(13) and(14) provide a vivi function. Concerning consequences of this finding we refer

and nontrivial example of nonuniqueness of the KS poteny,e reader to the discussion we have given earlier of conse-

tials of CDFT. _ quences of nonuniqueness in SDFThat discussion carries
Next, we turn to the superconducting case. Here the ungyer aimost literally to the case of current-carrying and su-
derlying many-body Hamiltonian s perconducting systems. However, we wish to stress particu-
larly that for most applications of any DFT, including CDFT
H=T+0 +J d3rﬁ(r)[v(r)—,u]+f d3 m(r)B(r) and DFT for superconductors, uniqueness of the ground-state
wave function is sufficient, since no explicit use of the
. density-potential relation is made. A notable exception
—f daff d'[x(r,r")D*(r,r')+H.cl, (15  within CDFT is the recent work by Lee and Handyjn
which it is attempted to systematically construct exact CDFT
where the expectation value of the pair operai(Qr,r’) potentials from given densities. This construction must be
=W, (r)¥(r') is the superconducting order parameter andeexamined in view of our finding that the CDFT potentials
D(r,r’) the corresponding pair potential. The phonon-are not un_iquely determined by the densities. Further excep-
induced interaction term of Ref. 9 can be addeditwithout ~ tions are listed in Ref. 6. , ,
changing our conclusions. _Another important consequence of nonuniqueness in DFT
As above, we now assume that the densitigg, m(r),  &/ses fror_n the connection betvyeen the externa! an_d KS po-
and x(r,r') can also be reproduced in different fields f[ent|als with the func_nonal derivatives of the kinetic- a_nd
—uv+Ap, B'=B+AB, and D'=D+AD. The equation internal-energy functl_onals. F_or QDFT thgse connections
obeyed byAv, AB, andAD is take the form(neglecting, for simplicity, again the spin de-

grees of freedom
f d3r

At this stage we already see a first nontrivial difference to
the case of CDFT and SDFT: due to the presence of the paand

ﬁAu+rﬁAB—f d*’(YAD+H.c) [¢o=AEy. STN,j,]
S Jp

1
(16) —T(Ir):vs(f)—MJr%As(f)z (17
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STdn,jpl 1 potentials of SDFT, discussed in Refs. 5 and 6. Due to the
—W:EAS(U. (18 nondifferentiability of the XC functional, an infinitesimal
change in the spin densitguch as the chang®m caused by
i.e., derivatives of the noninteracting kinetic enefigydeter-  the flipping of a single electron in an extended half-metallic
mine the KS potentials; andAs. Similarly, the derivatives  ferromagnet may cause a finitédiscontinuous change in
of the internal-energy functiondt, defined as the ground- the XC potential. None of the existing approximations is able
state expectation value df and U, determine the external to reproduce such a discontinuity. Going to finite but small
potentialsv(r) and A(r). Analogous equations hold also in temperatures simply replaces the discontinuity by a very
DFT for superconductors. rapid continuous change. To estimate the scale of this change
From Eqs(17) and(18) we see that nonuniqueness of the ye note that aT =0 the magnetic field is only determined by
Kohn-Sham potentials implies that the derivatives on thgne gensities to WithirEg / o, WhereEg is the energy gap
Ieft-han_d side do not exist on the_space of all de_nsities_, for, it g o the Bohr magneton. Multiplying this with the low-
they existed, they would determine the potentials uniquely,oneratyre spin susceptibility we find that the spin density

Consequently, the functionalls, and F display multiple de-

e . S . : changes by §mEg/kgT)exp(—Eg/kgT). As long askgT
rivative discontinuities and must be redefined on equivalence L ;
classes of densities arising from the potenti@sdulo the <Eg this is much less than the physically relevant change

nonunique piecesThe same applies to the XC functional ém, and therefore the functional remains effectively discon-

Exc itself, sinceEy is in general defined as the difference tinuous in the low-temperature regime.
Xc ’ XC 9 - In summary, we have shown that generalizations of DFT
Exc=F—Ts—Ey, where Ey stands for all Hartree-like

. ) . . to current-carrying and to superconducting systems suffer
terms mclud'ed ;.n thetarespe(;:ltzlve gormqu[a(;[onlof chFT' %Om'from the same nonuniqueness problem we earlier discussed
mon approximations 1 s andtyc do not dispiay ese de- ¢, 1pa case of spin-polarized systems. Although the details
rivative discontinuities. Judging from experiehtewith

imilar di tinuities | di DET t this short are interestingly different in each of these three cases, the
simiiar discontinutties in ordinary we expect this shor “physical connection of nonunigueness with a vanishing re-
coming to be most relevant for the calculation of energy;

sponse function, as well as the classification of nonunique-
gaEI’_Sh' . blem di d alf " ness into systemati@rising from constants of motigrand
€ nonuniqueness problem disCussed adagewell as accidentalarising from special features of the ground state

th?‘ |nt|mately related nondifferentiability prob_le)_m)ccurs, and the consequences for differentiability of the respective
strictly speaking, only at zero temperature. At finite tempera-

ture one should work with a statistical ensemble, rather thagggslsty Jﬁgcwg agjsevaéndai’gcir? rgntyh?)tﬁzr] gehner:lllizt Qtri(e)ﬁ of
with a ground state, and then the uniqueness of the reIatioBFT ' ' '

between density and potential is restotédlowever, the sin- '

gularity atT=0 is an indicator that a real physical problem K.C. thanks the FAPESP for financial support. G.V. ac-

exists. Consider, as an illustration, the nonuniqueness of thenowledges support from NSF Grant No. DMR-0074959.
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