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Nonuniqueness and derivative discontinuities in density-functional theories for current-carrying
and superconducting systems
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Current-carrying and superconducting systems can be treated within density-functional theory if suitable
additional density variables~the current density and the superconducting order parameter, respectively! are
included in the density-functional formalism. Here we show that the corresponding conjugate potentials~vector
and pair potentials, respectively! arenot uniquely determined by the densities. The Hohenberg-Kohn theorem
of these generalized density-functional theories is thus weaker than the original one. We give explicit examples
and explore some consequences.

DOI: 10.1103/PhysRevB.65.113106 PACS number~s!: 71.15.Mb, 31.15.Ew, 75.20.2g, 74.25.Jb
o
o

y

l
a
l-

is
te
d

te

r-

le
n

K
te
T

in
f t
al
to

n
e

ss
te
es

nse

pri-

-

ire
ys-

se
ody
al

-

tate,

po-
ays
Today, density-functional theory1 ~DFT! is an indispens-
able tool for the investigation of the electronic structure
matter in atomic, molecular, or extended systems. The the
rests on the celebrated Hohenberg-Kohn~HK! theorem,2

which guarantees that the (v-representable! ground-state
density n(r ) uniquely determines the ground-state man
body wave functionc0(r1 , . . . ,rN). This theorem on its
own is a very powerful result, but in the origina
formulation2,3 of DFT one can prove even more: the extern
potentialv(r ) ~e.g., the nuclear charge distribution in a mo
ecule or a solid!, too, is a functional of the density, and
unique up to an additive constant. Since this external po
tial in turn determines all eigenstates of the many-bo
Hamiltonian, this implies thatall observables~and not only
ground state ones! are functionals of the ground-sta
density.

Following original ideas of von Barth and Hedin,4 it has
recently been shown by Eschrig and Pickett5 and by the
present authors6 that in spin-DFT~SDFT! the situation is not
that simple: while the wave function is still uniquely dete
mined by the spin densitiesn↑(r ) and n↓(r ), the external
potentialsv↑(r ) andv↓(r ) @or v(r ) andB(r )# are not. This
implies that SDFT functionals are not always differentiab
and has far-reaching consequences for the constructio
better exchange-correlation~XC! functionals, and for appli-
cations to systems such as half-metallic ferromagnets.5,6

SDFT is not the only instance at which the original H
theorem has been generalized. In the present work we ex
the analysis of Ref. 6 to two other generalizations of DF
namely, current-DFT7,8 ~CDFT! and DFT for
superconductors.9–12 The discovery of nonuniqueness
these generalized DFTs deepens our understanding o
respective XC functionals and flags a warning signal to
too-immediate generalizations of the original HK theorem
more complex situations.

The basic physics of nonuniqueness is simple. Whe
sufficiently small change in one of the external fields do
not change the corresponding density distribution, the a
ciated susceptibility vanishes. The search for, and the in
pretation of, nonuniqueness in DFT is thus guided by inv
0163-1829/2002/65~11!/113106~4!/$20.00 65 1131
f
ry

-

l

n-
y

,
of

nd
,

he
l-

a
s
o-
r-
-

tigations of the circumstances under which some respo
function becomes zero.

We first consider current-carrying systems. The appro
ate formulation of~nonrelativistic! DFT is CDFT,7,8 which is
based on the many-body Hamiltonian~in atomic units, i.e.,
\5e5m51)

Ĥ5T̂1Û1E d3rn̂~r !@v~r !2m#1
1

cE d3r ĵ p~r !A~r !

1
1

2c2E d3rn̂~r !A2~r !1E d3r m̂~r !B~r !, ~1!

whereB(r )5“3A(r ) is the magnetic field,v(r ) the elec-
trostatic one, andT̂ and Û denote the operators for kinetic
energy and particle-particle interaction, respectively.

The basic variables of CDFT, in terms of which the ent
ground-state physics of the current-carrying many-body s
tem is described, aren(r ), m(r ), andj p(r ), the ground-state
expectation values of the particle-density operatorn̂(r )
5(sCs

†(r )Cs(r ), spin-magnetization operatorm̂(r )

5(1/2c)(a,bCa(r )ŝCb(r ), and ~paramagnetic! current-
density operator

ĵ p~r !5
1

2i (
s

$Cs
†~r !@¹Cs~r !#2@¹Cs

†~r !#Cs~r !%,

~2!

where theCs(r ) are field operators andŝ is the vector of
Pauli matrices.

According to the CDFT version of the HK theorem the
densities uniquely determine the ground-state many-b
wave function. However, in striking contrast to convention
‘‘density only’’ DFT they donot uniquely determine the po
tentialsA(r ), B(r ), andv(r ): it is possible to find different
vector and scalar potentials that yield the same ground s
and consequently the same densitiesn(r ), m(r ), and j p(r ).

Before delving into a general characterization of such
tentials, we present a simple example that clearly displ
©2002 The American Physical Society06-1
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the problem. We consider an atom subjected to a unifo
magnetic fieldB5Bẑ, whereẑ is the unit vector along thez
axis. Ignoring spin-orbit interactions, the Hamiltonian can
written as

Ĥ5(
i

S p̂i
2

2
2

Z

r i
1

B2r',i
2

8c2 D 1(
iÞ j

1

2r i j
1

L̂z12Ŝz

2c
B, ~3!

wherer',i
2 [xi

21yi
2 , andL̂z and Ŝz are thez components of

the orbital and spin angular-momentum operatorsL andS. Z
is the atomic number, specifying the external potential. B
L̂z andŜz are constants of motion, hence the~nondegenerate!
ground state ofĤ is also an eigenstate ofL̂z and Ŝz , with
eigenvaluesmL and mS respectively. The ground-state e
ergy isE0.

Consider now the same system ofZ electrons being sub
jected to a different~but still uniform! magnetic fieldB8

5B8ẑ and the external potential

v8~r !52
Z

r
2

1

8c2 ~B822B2!r'
2 . ~4!

The Hamiltonian of this system is

Ĥ85Ĥ1
1

2c
~ L̂z12Ŝz!~B82B!. ~5!

Thus, we immediately see that the ground state ofĤ ~or,
for that matter, any simultaneous eigenstate ofĤ, L̂z , and
Ŝz! is also an eigenstate ofĤ8 with eigenvalueE85E0
1(1/2c)(mL12mS)(B82B). Furthermore, if the difference
B82B is not too large, this eigenstate will be the grou
state ofĤ8; the qualitative condition for this to happen is th
E82E0!EG whereEG is the energy gap between the fir
excited state and the ground state ofĤ. Thus, we have suc
ceeded in constructing two different sets of potentials,A
5(B3r )/2 andv, andA85(B83r )/2 andv8, that yield the
same ground state.

Let us now consider the question from a more gene
point of view. Let A85A1DA and v85v1Dv be vector
and scalar potentials that are supposed to yield the s
ground statec0 asA andv. A necessary condition for this i
that c0 satisfy the eigenvalue equation

E d3r F n̂Dv1
1

2c2 n̂DA21
1

c
ĵ pDAGc05DEc0 , ~6!

where we neglected, for simplicity, the spin degrees of fr
dom, because the nonuniqueness associated with them
ready discussed in Refs. 5 and 6.

The general problem at hand is thus to find a linear co
bination of the density operatorsn̂(r ) and ĵ p(r ) that hasc0
as eigenfunction. This problem is not easily solved in g
eral. It is easy, however, to obtain a particular solution of E
~6! if one can find a linear combination of the density ope
tors that is a constant of motion. The ground state ofĤ is
automatically an eigenstate of such a constant of motion,
11310
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Eq. ~6! is satisfied. By making the coefficients of the line
combination sufficiently small we can always ensure thatc0
remains the ground state of the Hamiltonian with the n
potentials~assuming of course that the spectrum ofĤ has a
gap between its ground state and first excited state!. This is
the same prescription employed in Ref. 6 to construct
amples for nonuniqueness in SDFT. In the terminology
that reference nonuniqueness arising from such constan
motion is referred to assystematic nonuniqueness.

As a trivial example of this procedure consider the co
stant of motionN̂5*d3r n̂(r ). The existence of this constan
of motion tells us thatDv(r )5const,DA(r )50 is a solution
of Eq. ~6!. This is the well-known nonuniqueness of the sc
lar potential with respect to the addition of a constant. Co
sider now the less trivial example

L̂z5E d3r ~ ẑ3r !• ĵ p~r !, ~7!

which is a constant of motion in any system that is invaria
under rotations about thez axis. Comparing this with Eq.~6!

we immediately see thatDA(r )5DB( ẑ3r )/2 and Dv(r )
52@DA(r )#2/(2c2) with DB5const is indeed a solution o
the posed problem. This is, of course, nothing but a m
formal derivation of the elementary example discuss
above.

Another way in which nonuniqueness can arise is by a
ing an operator to the Hamiltonian that, although not a c
stant of motion, happens to have eigenvalue zero on
ground state. This was calledaccidental nonuniquenessin
Ref. 6. To give an example in CDFT, letns(r ) and j ps(r )
denote the exact spin-resolved ground-state density and p
magnetic current of a two-electron system, such as the
atom, in the presence of external vector and scalar potent
For sufficiently small external fields these densities m
arise from the single-particle orbitalsw↑(r ) and w↓(r ) that
are the lowest-energy solutions of the spin-dependent Ko
Sham~KS! equations

H 1

2 S 2 i“1
1

c
Ass~r ! D 2

1vss~r !J ws~r !5esws~r !, ~8!

whereAss(r ) and vss(r ) are the KS potentials, defined, a
usual, in terms of the external, Hartree, and exchan
correlation potentials. The relation between the densities
the single-particle orbitals isns(r )5uws(r )u2 and

j ps~r !5ns~r !“fs~r !, ~9!

wherefs(r ) is the phase of the complex orbitalws(r ).13

Equation~8! can be rewritten in the form

H 1

2 S 2 i“1
1

c
@Ass1c“fs# D 2

1vssJ uwsu5esuwsu,

~10!

which has the solution Ass(r )52c“fs(r )
52cj ps(r )/ns(r ) and
6-2
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vss~r !5
1

2

¹2uws~r !u
uws~r !u

1es5
1

2

¹2ns
1/2~r !

ns
1/2~r !

1es . ~11!

To determine whether these are the only potentials that
produce the given densitiesns(r ) and j ps(r ) we assume the
existence of a second such set of potentials,Ass8 (r )
5Ass(r )1DAss(r ) andvss(r )5vss(r )1Dvss(r ). By sub-
stituting these back in Eq.~10! and separating the real an
the imaginary parts we obtain

vss8 ~r !1
1

2c2 DAss
2 ~r !5

1

2

¹2ns
1/2~r !

ns
1/2~r !

1es ~12!

and“•@ns(r )DAss(r )#50. This last equation follows more
directly from the application of the continuity equation to t
real solution of Eq.~10!. Its general solution isDAss(r )
5“3Qs(r )/ns(r ) whereQs(r ) is an arbitrary vector field.
Hence,

vss8 ~r !5vss~r !2
1

2c2 S“3Qs~r !

ns~r ! D 2

~13!

and

Ass8 ~r !5Ass~r !1
“3Qs~r !

ns~r !
. ~14!

By construction,Ass(r ) and vss(r ) are the potentials for
which ns(r ) and j ps(r ) areground-statedensities. IfQs is
sufficiently small and if the KS system atQs50 has an
energy gap separating the first excited state from the gro
state,ws(r ) will remain the ground state in the potentia
Ass8 (r ) andvss8 (r ). Thus, Eqs.~13! and~14! provide a vivid
and nontrivial example of nonuniqueness of the KS pot
tials of CDFT.

Next, we turn to the superconducting case. Here the
derlying many-body Hamiltonian is9

Ĥ5T̂1Û1E d3rn̂~r !@v~r !2m#1E d3r m̂~r !B~r !

2E d3r E d3r 8@ x̂~r ,r 8!D* ~r ,r 8!1H.c.#, ~15!

where the expectation value of the pair operatorx̂(r ,r 8)
5C↑(r )C↓(r 8) is the superconducting order parameter a
D(r ,r 8) the corresponding pair potential. The phono
induced interaction term of Ref. 9 can be added toĤ without
changing our conclusions.

As above, we now assume that the densitiesn(r ), m(r ),
and x(r ,r 8) can also be reproduced in different fieldsv8
5v1Dv, B85B1DB, and D85D1DD. The equation
obeyed byDv, DB, andDD is

E d3r F n̂Dv1m̂DB2E d3r 8~ x̂DD1H.c.!Gc05DEc0 .

~16!

At this stage we already see a first nontrivial difference
the case of CDFT and SDFT: due to the presence of the
11310
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operator x̂ in Ĥ the particle number operatorN̂ is not a
constant of motion, and we arenot free to add an arbitrary
constant to the external potentialv(r ). In other wordsDD
50, DB50, andDv5const is not a solution of Eq.~16! for
a given c0. DFT for superconductors thus does not suf
from the most basic nonuniqueness of all, that with respec
the additive constant in the electrostatic potential.

However, DFT for superconductors is not free of no
uniqueness. For a singlet superconductor the spin susc
bility vanishes at zero temperature.14 In the light of our
physical characterization of nonuniqueness at the beginn
of this paper we would thus expect some associated no
niqueness. Indeed, this is bourne out by more detailed an
sis. If B5Bẑ is spatially uniform and sufficiently weak not t
break Cooper pairs paramagnetically, thenB85B1DB,
whereDB is also weak, uniform, and parallel toẑ, has the
same ground state, because under these circumstancesM̂z 5

*d3r m̂z is a conserved quantity, i.e., the superconductor
mains in a singlet state, with all electrons paired up. Con
quently, the set of potentials$v,B,D% is not uniquely deter-
mined by the conjugate densities$n,m,x%. Since it is
associated with the constant of motionM̂ z , this issystematic
nonuniquenessin the above sense.

With these examples we end our list of explicit occu
rences of nonuniqueness in generalized DFTs, and now
to a discussion of broader aspects of our findings.

In early papers on both CDFT7,8 and DFT for
superconductors10 one finds the statement that the chos
densities uniquely determine the corresponding potenti
As we have shown here, these statements are not accu
and all that is determined uniquely is the ground-state w
function. Concerning consequences of this finding we re
the reader to the discussion we have given earlier of con
quences of nonuniqueness in SDFT.6 That discussion carries
over almost literally to the case of current-carrying and
perconducting systems. However, we wish to stress part
larly that for most applications of any DFT, including CDF
and DFT for superconductors, uniqueness of the ground-s
wave function is sufficient, since no explicit use of th
density-potential relation is made. A notable excepti
within CDFT is the recent work by Lee and Handy,15 in
which it is attempted to systematically construct exact CD
potentials from given densities. This construction must
reexamined in view of our finding that the CDFT potentia
are not uniquely determined by the densities. Further exc
tions are listed in Ref. 6.

Another important consequence of nonuniqueness in D
arises from the connection between the external and KS
tentials with the functional derivatives of the kinetic- an
internal-energy functionals. For CDFT these connectio
take the form~neglecting, for simplicity, again the spin de
grees of freedom!

2
dTs@n,j p#

dn~r !
5vs~r !2m1

1

2c
As~r !2 ~17!

and
6-3
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2
dTs@n,j p#

d j p~r !
5

1

c
As~r !, ~18!

i.e., derivatives of the noninteracting kinetic energyTs deter-
mine the KS potentialsvs andAs . Similarly, the derivatives
of the internal-energy functionalF, defined as the ground
state expectation value ofT̂ and Û, determine the externa
potentialsv(r ) andA(r ). Analogous equations hold also i
DFT for superconductors.

From Eqs.~17! and~18! we see that nonuniqueness of t
Kohn-Sham potentials implies that the derivatives on
left-hand side do not exist on the space of all densities, fo
they existed, they would determine the potentials uniqu
Consequently, the functionalsTs andF display multiple de-
rivative discontinuities and must be redefined on equivale
classes of densities arising from the potentialsmodulo the
nonunique pieces. The same applies to the XC function
EXC itself, sinceEXC is in general defined as the differenc
EXC5F2Ts2EH , where EH stands for all Hartree-like
terms included in the respective formulation of DFT. Co
mon approximations toTs andEXC do not display these de
rivative discontinuities. Judging from experience16 with
similar discontinuities in ordinary DFT we expect this sho
coming to be most relevant for the calculation of ener
gaps.

The nonuniqueness problem discussed above~as well as
the intimately related nondifferentiability problem! occurs,
strictly speaking, only at zero temperature. At finite tempe
ture one should work with a statistical ensemble, rather t
with a ground state, and then the uniqueness of the rela
between density and potential is restored.17 However, the sin-
gularity atT50 is an indicator that a real physical proble
exists. Consider, as an illustration, the nonuniqueness of
v.
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potentials of SDFT, discussed in Refs. 5 and 6. Due to
nondifferentiability of the XC functional, an infinitesima
change in the spin density~such as the changedm caused by
the flipping of a single electron in an extended half-meta
ferromagnet! may cause a finite~discontinuous! change in
the XC potential. None of the existing approximations is a
to reproduce such a discontinuity. Going to finite but sm
temperatures simply replaces the discontinuity by a v
rapid continuous change. To estimate the scale of this cha
we note that atT50 the magnetic field is only determined b
the densities to withinEG /m0, whereEG is the energy gap
and m0 the Bohr magneton. Multiplying this with the low
temperature spin susceptibility we find that the spin den
changes by (dmEG /kBT)exp(2EG /kBT). As long askBT
!EG this is much less than the physically relevant chan
dm, and therefore the functional remains effectively disco
tinuous in the low-temperature regime.

In summary, we have shown that generalizations of D
to current-carrying and to superconducting systems su
from the same nonuniqueness problem we earlier discu
for the case of spin-polarized systems. Although the det
are interestingly different in each of these three cases,
physical connection of nonuniqueness with a vanishing
sponse function, as well as the classification of nonuniq
ness into systematic~arising from constants of motion! and
accidental~arising from special features of the ground stat!,
and the consequences for differentiability of the respec
density functionalsTs and EXC are the same in all three
cases, and, we believe, also in any other generalizatio
DFT.
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