1,223 research outputs found

    Convergence and Refinement of the Wang-Landau Algorithm

    Full text link
    Recently, Wang and Landau proposed a new random walk algorithm that can be very efficiently applied to many problems. Subsequently, there has been numerous studies on the algorithm itself and many proposals for improvements were put forward. However, fundamental questions such as what determines the rate of convergence has not been answered. To understand the mechanism behind the Wang-Landau method, we did an error analysis and found that a steady state is reached where the fluctuations in the accumulated energy histogram saturate at values proportional to [log(f)]1/2[\log(f)]^{-1/2}. This value is closely related to the error corrections to the Wang-Landau method. We also study the rate of convergence using different "tuning" parameters in the algorithm.Comment: 6 pages, submitted to Comp. Phys. Com

    Global wildlife trade across the tree of life

    Get PDF
    Wildlife trade is a multibillion dollar industry that is driving species toward extinction. Of >31,500 terrestrial bird, mammal, amphibian, and squamate reptile species, ~18% (N = 5579) are traded globally. Trade is strongly phylogenetically conserved, and the hotspots of this trade are concentrated in the biologically diverse tropics. Using different assessment approaches, we predict that, owing to their phylogenetic replacement and trait similarity to currently traded species, future trade will affect up to 3196 additional species—totaling 8775 species at risk of extinction from trade. Our assessment underscores the need for a strategic plan to combat trade with policies that are proactive rather than reactive, which is especially important because species can quickly transition from being safe to being endangered as humans continue to harvest and trade across the tree of life

    Systematic effects in the extraction of the 'WMAP haze'

    Full text link
    The extraction of a 'haze' from the WMAP microwave skymaps is based on subtraction of known foregrounds, viz. free-free (bremsstrahlung), thermal dust and synchrotron, each traced by other skymaps. While the 408 MHz all-sky survey is used for the synchrotron template, the WMAP bands are at tens of GHz where the spatial distribution of the radiating cosmic ray electrons ought to be quite different because of the energy-dependence of their diffusion in the Galaxy. The systematic uncertainty this introduces in the residual skymap is comparable to the claimed haze and can, for certain source distributions, have a very similar spectrum and latitudinal profile and even a somewhat similar morphology. Hence caution must be exercised in interpreting the 'haze' as a physical signature of, e.g., dark matter annihilation in the Galactic centre.Comment: 17 pages, 12 figures; improved diffusion model; extended discussion of spectral index maps; clarifying comments, figures and references added; to appear in JCA

    Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram

    Full text link
    We describe an efficient Monte Carlo algorithm using a random walk in energy space to obtain a very accurate estimate of the density of states for classical statistical models. The density of states is modified at each step when the energy level is visited to produce a flat histogram. By carefully controlling the modification factor, we allow the density of states to converge to the true value very quickly, even for large systems. This algorithm is especially useful for complex systems with a rough landscape since all possible energy levels are visited with the same probability. In this paper, we apply our algorithm to both 1st and 2nd order phase transitions to demonstrate its efficiency and accuracy. We obtained direct simulational estimates for the density of states for two-dimensional ten-state Potts models on lattices up to 200×200200 \times 200 and Ising models on lattices up to 256×256256 \times 256. Applying this approach to a 3D ±J\pm J spin glass model we estimate the internal energy and entropy at zero temperature; and, using a two-dimensional random walk in energy and order-parameter space, we obtain the (rough) canonical distribution and energy landscape in order-parameter space. Preliminary data suggest that the glass transition temperature is about 1.2 and that better estimates can be obtained with more extensive application of the method.Comment: 22 pages (figures included

    Distribution of Glycated Haemoglobin According to Early-Life and Contemporary Characteristics in Adolescents and Adults without Diabetes:The 1982 and 1993 Pelotas Birth Cohorts

    Get PDF
    AIM:Glycated haemoglobin (HbA1c), a marker of glucose control in individuals with diabetes mellitus, is also related with the incidence of cardiometabolic risk in populations free of disease. The aim of this study was to describe the distribution of HbA1c levels according to early-life and contemporary factors in adolescents and adults without diabetes mellitus. METHODS:HbA1c was measured in adults aged 30 years and adolescents aged 18 years who are participants in the 1982 and 1993 Pelotas Birth Cohorts, respectively. Bivariate and multivariate analyses were performed to describe the HbA1c mean values according to early-life and contemporary characteristics collected prospectively since birth. RESULTS:The distribution of the HbA1c was approximately normal in both cohorts, with a mean (SD) 5.10% (0.43) in the 1982 cohort, and 4.89% (0.50) in the 1993 cohort. HbA1c mean levels were significantly higher in individuals self-reported as black/brown skin color compared to those self-reported as white in both cohorts. Parental history of diabetes was associated with higher HbA1c mean in adults, while stunting at one year old presented an inverse relation with the outcome in adolescents. No other early and contemporary factors were associated with HbA1c levels in adults or adolescents. CONCLUSIONS:We found a consistent relationship between HbA1c and skin color in both cohorts. Further research is needed to understand the role of genomic ancestry on levels of HbA1c concentrations which may inform policies and preventive actions for diabetes mellitus and cardiometabolic risk

    Description Of Rhodnius Marabaensis Sp. N. (hemiptera, Reduviidade, Triatominae) From Pará State, Brazil

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Rhodnius marabaensis sp. n. was collected on 12 May 2014 in the Murumurú Environmental Reserve in the city of Marabá, Pará State, Brazil. This study was based on previous consultation of morphological descriptions of 19 Rhodnius species and compared to the identification key for the genus Rhodnius. The examination included specimens from 18 Rhodnius species held in the Brazilian National and International Triatomine Taxonomy Reference Laboratory in the Oswaldo Cruz Institute in Rio de Janeiro, Brazil. The morphological characteristics of the head, thorax, abdomen, genitalia, and eggs have been determined. Rhodnius prolixus and R. robustus were examined in more detail because the BLAST analysis of a cyt-b sequence shows they are closely related to the new species, which also occurs in the northern region of Brazil. The most notable morphological features that distinguish R. marabaensis sp. n. are the keel-shaped apex of the head, the length of the second segment of the antennae, the shapes of the prosternum, mesosternum and metasternum, the set of spots on the abdomen, the male genitalia, the posterior and ventral surfaces of the external female genitalia, and the morphological characteristics of the eggs. Rhodnius jacundaensis Serra, Serra and Von Atzingen (1980) nomen nudum specimens deposited at the Maraba Cultural Center Foundation - MCCF were examined and considered as a synonym of R. marabaensis sp. n. © Eder dos Santos Souza et al.201662145622010/15386-3, FAPESP, Fundação de Amparo à Pesquisa do Estado de São Paulo23038-005285/2011-2012, CAPES, Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorCNPq, Conselho Nacional de Desenvolvimento Científico e TecnológicoFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Dilatonic current-carrying cosmic strings

    Full text link
    We investigate the nature of ordinary cosmic vortices in some scalar-tensor extensions of gravity. We find solutions for which the dilaton field condenses inside the vortex core. These solutions can be interpreted as raising the degeneracy between the eigenvalues of the effective stress-energy tensor, namely the energy per unit length U and the tension T, by picking a privileged spacelike or timelike coordinate direction; in the latter case, a phase frequency threshold occurs that is similar to what is found in ordinary neutral current-carrying cosmic strings. We find that the dilaton contribution for the equation of state, once averaged along the string worldsheet, vanishes, leading to an effective Nambu-Goto behavior of such a string network in cosmology, i.e. on very large scales. It is found also that on small scales, the energy per unit length and tension depend on the string internal coordinates in such a way as to permit the existence of centrifugally supported equilibrium configuration, also known as vortons, whose stability, depending on the very short distance (unknown) physics, can lead to catastrophic consequences on the evolution of the Universe.Comment: 10 pages, ReVTeX, 2 figures, minor typos corrected. This version to appear in Phys. Rev.

    Accurate Atmospheric Parameters at Moderate Resolution Using Spectral Indices: Preliminary Application to the MARVELS Survey

    Full text link
    Studies of Galactic chemical and dynamical evolution in the solar neighborhood depend on the availability of precise atmospheric parameters (Teff, [Fe/H] and log g) for solar-type stars. Many large-scale spectroscopic surveys operate at low to moderate spectral resolution for efficiency in observing large samples, which makes the stellar characterization difficult due to the high degree of blending of spectral features. While most surveys use spectral synthesis, in this work we employ an alternative method based on spectral indices to determine the atmospheric parameters of a sample of nearby FGK dwarfs and subgiants observed by the MARVELS survey at moderate resolving power (R~12,000). We have developed three codes to automatically normalize the observed spectra, measure the equivalent widths of the indices and, through the comparison of those with values calculated with pre-determined calibrations, derive the atmospheric parameters of the stars. The calibrations were built using a sample of 309 stars with precise stellar parameters obtained from the analysis of high-resolution FEROS spectra. A validation test of the method was conducted with a sample of 30 MARVELS targets that also have reliable atmospheric parameters from high-resolution spectroscopic analysis. Our approach was able to recover the parameters within 80 K for Teff, 0.05 dex for [Fe/H] and 0.15 dex for log g, values that are lower or equal to the typical external uncertainties found between different high-resolution analyzes. An additional test was performed with a subsample of 138 stars from the ELODIE stellar library and the literature atmospheric parameters were recovered within 125 K for Teff, 0.10 dex for [Fe/H] and 0.29 dex for log g. These results show that the spectral indices are a competitive tool to characterize stars with the intermediate resolution spectra.Comment: Accepted for publication in AJ. Abstract edited to comply with arXiv standards regarding the number of character

    Density-functional calculation of ionization energies of current-carrying atomic states

    Full text link
    Current-density-functional theory is used to calculate ionization energies of current-carrying atomic states. A perturbative approximation to full current-density-functional theory is implemented for the first time, and found to be numerically feasible. Different parametrizations for the current-dependence of the density functional are critically compared. Orbital currents in open-shell atoms turn out to produce a small shift in the ionization energies. We find that modern density functionals have reached an accuracy at which small current-related terms appearing in open-shell configurations are not negligible anymore compared to the remaining difference to experiment.Comment: 7 pages, 2 tables, accepted by Phys. Rev.
    corecore