640 research outputs found
Electron density stratification in two-dimensional structures tuned by electric field
A new kinetic instability which results in formation of charge density waves
is proposed. The instability is of a purely classical nature. A spatial period
of arising space-charge and field configuration is inversely proportional to
electric field and can be tuned by applied voltage. The instability has no
interpretation in the framework of traditional hydrodynamic approach, since it
arises from modulation of an electron distribution function both in coordinate
and energy spaces. The phenomenon can be observed in thin 2D nanostructures at
relatively low electron density.Comment: 4 pages, 2 figure
Physical Acoustics
Contains reports on eight research projects.Office of Naval Research (Contract Nonr-1841(42)United States Air Force, Air Force Cambridge Research Center, Air Research and Development Command (Contract AF19(604)-2051
Distinct Roles of Different Homer1 Isoforms in Behaviors and Associated Prefrontal Cortex Function
Homer1 mutant mice exhibit behavioral and neurochemical abnormalities that are consistent with an animal model of schizophrenia. Because the Homer1 gene encodes both immediate early gene (IEG) and constitutively expressed (CC) gene products, we used the local infusion of adeno-associated viral vectors carrying different Homer1 transcriptional variants into the prefrontal cortex (PFC) to distinguish between the roles for IEG and CC Homer1 isoforms in the “schizophrenia-like” phenotype of Homer1 mutant mice. PFC overexpression of the IEG Homer1 isoform Homer1a reversed the genotypic differences in behavioral adaptation to repeated stress, whereas overexpression of the constitutively expressed Homer1 isoform Homer1c reversed the genotypic differences in sensorimotor and cognitive processing, as well as cocaine behavioral sensitivity. Homer1a overexpression did not influence PFC basal glutamate content but blunted the glutamate response to cocaine in wild-type mice. In contrast, Homer1c overexpression reversed the genotypic difference in PFC basal glutamate content and enhanced cocaine-induced elevations in glutamate. These data demonstrate active and distinct roles for Homer1a and Homer1c isoforms in the PFC in the mediation of behavior, in the maintenance of basal extracellular glutamate, and in the regulation of PFC glutamate release relevant to schizophrenia and stimulant abuse comorbidity
The International Urban Energy Balance Models Comparison Project: First Results from Phase 1
A large number of urban surface energy balance models now exist with different assumptions about the
important features of the surface and exchange processes that need to be incorporated. To date, no com-
parison of these models has been conducted; in contrast, models for natural surfaces have been compared
extensively as part of the Project for Intercomparison of Land-surface Parameterization Schemes. Here, the
methods and first results from an extensive international comparison of 33 models are presented. The aim of
the comparison overall is to understand the complexity required to model energy and water exchanges in
urban areas. The degree of complexity included in the models is outlined and impacts on model performance
are discussed. During the comparison there have been significant developments in the models with resulting
improvements in performance (root-mean-square error falling by up to two-thirds). Evaluation is based on a
dataset containing net all-wave radiation, sensible heat, and latent heat flux observations for an industrial area in
Vancouver, British Columbia, Canada. The aim of the comparison is twofold: to identify those modeling ap-
proaches that minimize the errors in the simulated fluxes of the urban energy balance and to determine the
degree of model complexity required for accurate simulations. There is evidence that some classes of models
perform better for individual fluxes but no model performs best or worst for all fluxes. In general, the simpler
models perform as well as the more complex models based on all statistical measures. Generally the schemes
have best overall capability to model net all-wave radiation and least capability to model latent heat flux
Use of FLUXNET in the Community Land Model development
The Community Land Model version 3 (CLM3.0) simulates land-atmosphere exchanges in response to climatic forcings. CLM3.0 has known biases in the surface energy partitioning as a result of deficiencies in its hydrological and biophysical parameterizations. Such models, however, need to be robust for multidecadal global climate simulations. FLUXNET now provides an extensive data source of carbon, water and energy exchanges for investigating land processes, and it encompasses a global range of ecosystem-climate interactions. Data from 15 FLUXNET sites are used to identify and improve model deficiencies. Including a prognostic aquifer, a bare soil evaporation resistance formulation and numerous other changes in the model result in a significantly improved soil hydrology and energy partitioning. Terrestrial water storage increased by up to 300 mm in warm climates and decreased in cold climates. Nitrogen control of photosynthesis is revealed as another missing process in the model. These improvements increase the correlation coefficient of hourly and monthly latent heat fluxes from a range of 0.5–0.6 to the range of 0.7–0.9. RMSE of the simulated sensible heat fluxes decrease by 20–50%. Primary production is overestimated during the wet season in mediterranean and tropical ecosystems. This might be related to missing carbon-nitrogen dynamics as well as to site-specific parameters. The new model (CLM3.5) with an improved terrestrial water cycle should lead to more realistic land-atmosphere exchanges in coupled simulations. FLUXNET is found to be a valuable tool to develop and validate land surface models prior to their application in computationally expensive global simulations
Recommended from our members
An urban parameterization for a global climate model. Part I: Formulation and evaluation for two cities
Urbanization, the expansion of built-up areas, is an important yet less-studied aspect of land use/land cover change in climate science. To date, most global climate models used to evaluate effects of land use/land cover change on climate do not include an urban parameterization. Here, the authors describe the formulation and evaluation of a parameterization of urban areas that is incorporated into the Community Land Model, the land surface component of the Community Climate System Model. The model is designed to be simple enough to be compatible with structural and computational constraints of a land surface model coupled to a global climate model yet complex enough to explore physically based processes known to be important in determining urban climatology. The city representation is based upon the “urban canyon” concept, which consists of roofs, sunlit and shaded walls, and canyon floor. The canyon floor is divided into pervious (e.g., residential lawns, parks) and impervious (e.g., roads, parking lots, sidewalks) fractions. Trapping of longwave radiation by canyon surfaces and solar radiation absorption and reflection is determined by accounting for multiple reflections. Separate energy balances and surface temperatures are determined for each canyon facet. A one-dimensional heat conduction equation is solved numerically for a 10-layer column to determine conduction fluxes into and out of canyon surfaces. Model performance is evaluated against measured fluxes and temperatures from two urban sites. Results indicate the model does a reasonable job of simulating the energy balance of cities
Managing Local Stressors for Coral Reef Condition and Ecosystem Services Delivery Under Climate Scenarios
Coral reefs provide numerous ecosystem goods and services, but are threatened by multiple environmental and anthropogenic stressors. To identify management scenarios that will reverse or mitigate ecosystem degradation, managers can benefit from tools that can quantify projected changes in ecosystem services due to alternative management options. We used a spatially-explicit biophysical ecosystem model to evaluate socio-ecological trade-offs of land-based vs. marine-based management scenarios, and local-scale vs. global-scale stressors and their cumulative impacts. To increase the relevance of understanding ecological change for the public and decision-makers, we used four ecological production functions to translate the model outputs into the ecosystem services: “State of the Reef,” “Trophic Integrity,” “Fisheries Production,” and “Fisheries Landings.” For a case study of Maui Nui, Hawai‘i, land-based management attenuated coral cover decline whereas fisheries management promoted higher total fish biomass. Placement of no-take marine protected areas (MPAs) across 30% of coral reef areas led to a reversal of the historical decline in predatory fish biomass, although this outcome depended on the spatial arrangement of MPAs. Coral cover declined less severely under strict sediment mitigation scenarios. However, the benefits of these local management scenarios were largely lost when accounting for climate-related impacts. Climate-related stressors indirectly increased herbivore biomass due to the shift from corals to algae and, hence, greater food availability. The two ecosystem services related to fish biomass increased under climate-related stressors but “Trophic Integrity” of the reef declined, indicating a less resilient reef. “State of the Reef” improved most and “Trophic Integrity” declined least under an optimistic global warming scenario and strict local management. This work provides insight into the relative influence of land-based vs. marine-based management and local vs. global stressors as drivers of changes in ecosystem dynamics while quantifying the tradeoffs between conservation- and extraction-oriented ecosystem services
- …