636 research outputs found

    Computational aspects of geometric programming

    Get PDF

    Electron density stratification in two-dimensional structures tuned by electric field

    Full text link
    A new kinetic instability which results in formation of charge density waves is proposed. The instability is of a purely classical nature. A spatial period of arising space-charge and field configuration is inversely proportional to electric field and can be tuned by applied voltage. The instability has no interpretation in the framework of traditional hydrodynamic approach, since it arises from modulation of an electron distribution function both in coordinate and energy spaces. The phenomenon can be observed in thin 2D nanostructures at relatively low electron density.Comment: 4 pages, 2 figure

    Physical Acoustics

    Get PDF
    Contains reports on eight research projects.Office of Naval Research (Contract Nonr-1841(42)United States Air Force, Air Force Cambridge Research Center, Air Research and Development Command (Contract AF19(604)-2051

    The International Urban Energy Balance Models Comparison Project: First Results from Phase 1

    Get PDF
    A large number of urban surface energy balance models now exist with different assumptions about the important features of the surface and exchange processes that need to be incorporated. To date, no com- parison of these models has been conducted; in contrast, models for natural surfaces have been compared extensively as part of the Project for Intercomparison of Land-surface Parameterization Schemes. Here, the methods and first results from an extensive international comparison of 33 models are presented. The aim of the comparison overall is to understand the complexity required to model energy and water exchanges in urban areas. The degree of complexity included in the models is outlined and impacts on model performance are discussed. During the comparison there have been significant developments in the models with resulting improvements in performance (root-mean-square error falling by up to two-thirds). Evaluation is based on a dataset containing net all-wave radiation, sensible heat, and latent heat flux observations for an industrial area in Vancouver, British Columbia, Canada. The aim of the comparison is twofold: to identify those modeling ap- proaches that minimize the errors in the simulated fluxes of the urban energy balance and to determine the degree of model complexity required for accurate simulations. There is evidence that some classes of models perform better for individual fluxes but no model performs best or worst for all fluxes. In general, the simpler models perform as well as the more complex models based on all statistical measures. Generally the schemes have best overall capability to model net all-wave radiation and least capability to model latent heat flux

    Use of FLUXNET in the Community Land Model development

    Get PDF
    The Community Land Model version 3 (CLM3.0) simulates land-atmosphere exchanges in response to climatic forcings. CLM3.0 has known biases in the surface energy partitioning as a result of deficiencies in its hydrological and biophysical parameterizations. Such models, however, need to be robust for multidecadal global climate simulations. FLUXNET now provides an extensive data source of carbon, water and energy exchanges for investigating land processes, and it encompasses a global range of ecosystem-climate interactions. Data from 15 FLUXNET sites are used to identify and improve model deficiencies. Including a prognostic aquifer, a bare soil evaporation resistance formulation and numerous other changes in the model result in a significantly improved soil hydrology and energy partitioning. Terrestrial water storage increased by up to 300 mm in warm climates and decreased in cold climates. Nitrogen control of photosynthesis is revealed as another missing process in the model. These improvements increase the correlation coefficient of hourly and monthly latent heat fluxes from a range of 0.5–0.6 to the range of 0.7–0.9. RMSE of the simulated sensible heat fluxes decrease by 20–50%. Primary production is overestimated during the wet season in mediterranean and tropical ecosystems. This might be related to missing carbon-nitrogen dynamics as well as to site-specific parameters. The new model (CLM3.5) with an improved terrestrial water cycle should lead to more realistic land-atmosphere exchanges in coupled simulations. FLUXNET is found to be a valuable tool to develop and validate land surface models prior to their application in computationally expensive global simulations

    Managing Local Stressors for Coral Reef Condition and Ecosystem Services Delivery Under Climate Scenarios

    Get PDF
    Coral reefs provide numerous ecosystem goods and services, but are threatened by multiple environmental and anthropogenic stressors. To identify management scenarios that will reverse or mitigate ecosystem degradation, managers can benefit from tools that can quantify projected changes in ecosystem services due to alternative management options. We used a spatially-explicit biophysical ecosystem model to evaluate socio-ecological trade-offs of land-based vs. marine-based management scenarios, and local-scale vs. global-scale stressors and their cumulative impacts. To increase the relevance of understanding ecological change for the public and decision-makers, we used four ecological production functions to translate the model outputs into the ecosystem services: “State of the Reef,” “Trophic Integrity,” “Fisheries Production,” and “Fisheries Landings.” For a case study of Maui Nui, Hawai‘i, land-based management attenuated coral cover decline whereas fisheries management promoted higher total fish biomass. Placement of no-take marine protected areas (MPAs) across 30% of coral reef areas led to a reversal of the historical decline in predatory fish biomass, although this outcome depended on the spatial arrangement of MPAs. Coral cover declined less severely under strict sediment mitigation scenarios. However, the benefits of these local management scenarios were largely lost when accounting for climate-related impacts. Climate-related stressors indirectly increased herbivore biomass due to the shift from corals to algae and, hence, greater food availability. The two ecosystem services related to fish biomass increased under climate-related stressors but “Trophic Integrity” of the reef declined, indicating a less resilient reef. “State of the Reef” improved most and “Trophic Integrity” declined least under an optimistic global warming scenario and strict local management. This work provides insight into the relative influence of land-based vs. marine-based management and local vs. global stressors as drivers of changes in ecosystem dynamics while quantifying the tradeoffs between conservation- and extraction-oriented ecosystem services

    Evaluation of MPA designs that protect highly mobile megafauna now and under climate change scenarios

    Get PDF
    Marine protected area (MPA) designs, including large-scale MPAs (LSMPAs; \u3e150,000 km2), mobile MPAs (fluid spatiotemporal boundaries), and MPA networks, may offer different benefits to species and could enhance protection by encompassing spatiotemporal scales of animal movement. We sought to understand how well LSMPAs could benefit nine highly-mobile marine species in the tropics now and into the future by: 1) evaluating current range overlap within a LSMPA; 2) evaluating range overlap under climate change projections; and 3) evaluating how well theoretical MPA designs benefit these nine species. We focused on Palmyra Atoll and Kingman Reef, a 2000 km2 area within the 1.2 million km2 U.S. Pacific Remote Islands Marine National Monument (PRIMNM) that contains marine megafauna (reef and pelagic fishes; sea turtles; seabirds; cetaceans) reflecting different behaviors and habitat use. Our approach is useful for evaluating the effectiveness of the Palmyra-Kingman MPA and PRIMNM in protecting these species, and tropical LSMPAs in general, and for informing future MPA design. Stationary MPAs provided protection at varying scales. Reef manta rays (Mobula alfredi), grey reef sharks (Carcharhinus amblyrhynchos), green sea turtles (Chelonia mydas), and bottlenose dolphins (Tursiops truncatus) had overall small ranges (\u3c100 km from Palmyra-Kingman) and could benefit from stationary MPAs that contained heterogenous reef habitats. Yellowfin tuna (Thunnus albacares), sooty terns (Onychoprion fuscatus), red-footed boobies (Sula sula), great frigatebirds (Fregata minor), and melon-headed whales (Peponocephala electra) navigated complex oceanographic processes and may benefit most from mobile MPAs that shift with features including thermal fronts, cyclic regions of elevated productivity, and eddies, if relationships with these features are established and predictable. All species had capacity to travel to nearby reef systems, illustrating potential benefits of MPA networks and protected corridors. Suitable habitats will likely contract for all species as warm water expands under climate change scenarios (species habitats were predicted to decrease by 4–49% at Palmyra-Kingman) and MPAs may not protect suitable habitats into the future. Species habitat requirements and movement ecologies are critical aspects of marine spatial planning, especially with respect to dynamic ocean processes and a changing climate
    corecore