125 research outputs found

    Prostacyclin reverses platelet stress fibre formation causing platelet aggregate instability

    Get PDF
    Prostacyclin (PGI2) modulates platelet activation to regulate haemostasis. Evidence has emerged to suggest that thrombi are dynamic structures with distinct areas of differing platelet activation. It was hypothesised that PGI2 could reverse platelet spreading by actin cytoskeletal modulation, leading to reduced capability of platelet aggregates to withstand a high shear environment. Our data demonstrates that post-flow of PGI2 over activated and spread platelets on fibrinogen, identified a significant reduction in platelet surface area under high shear. Exploration of the molecular mechanisms underpinning this effect revealed that PGI2 reversed stress fibre formation in adherent platelets, reduced platelet spreading, whilst simultaneously promoting actin nodule formation. The effects of PGI2 on stress fibres were mimicked by the adenylyl cyclase activator forskolin and prevented by inhibitors of protein kinase A (PKA). Stress fibre formation is a RhoA dependent process and we found that treatment of adherent platelets with PGI2 caused inhibitory phosphorylation of RhoA, reduced RhoA GTP-loading and reversal of myosin light chain phosphorylation. Phospho-RhoA was localised in actin nodules with PKA type II and a number of other phosphorylated PKA substrates. This study demonstrates that PGI2 can reverse key platelet functions after their initial activation and identifies a novel mechanism for controlling thrombosis

    Age-related changes in global motion coherence: conflicting haemodynamic and perceptual responses

    Get PDF
    Our aim was to use both behavioural and neuroimaging data to identify indicators of perceptual decline in motion processing. We employed a global motion coherence task and functional Near Infrared Spectroscopy (fNIRS). Healthy adults (n = 72, 18-85) were recruited into the following groups: young (n = 28, mean age = 28), middle-aged (n = 22, mean age = 50), and older adults (n = 23, mean age = 70). Participants were assessed on their motion coherence thresholds at 3 different speeds using a psychophysical design. As expected, we report age group differences in motion processing as demonstrated by higher motion coherence thresholds in older adults. Crucially, we add correlational data showing that global motion perception declines linearly as a function of age. The associated fNIRS recordings provide a clear physiological correlate of global motion perception. The crux of this study lies in the robust linear correlation between age and haemodynamic response for both measures of oxygenation. We hypothesise that there is an increase in neural recruitment, necessitating an increase in metabolic need and blood flow, which presents as a higher oxygenated haemoglobin response. We report age-related changes in motion perception with poorer behavioural performance (high motion coherence thresholds) associated with an increased haemodynamic response

    Interactions between Multiple Recruitment Drivers: Post-Settlement Predation Mortality and Flow-Mediated Recruitment

    Get PDF
    Dispersal is a primary driver in shaping the future distribution of species in both terrestrial and marine systems. Physical transport by advection can regulate the distance travelled and rate of propagule supply to a habitat but post-settlement processes such as predation can decouple supply from recruitment. The effect of flow-mediated recruitment and predation on the recruitment success of an intertidal species, the eastern oyster Crassostrea virginica was evaluated in two-replicated field experiments. Two key crab species were manipulated to test predator identity effects on oyster mortality.Recruitment was ∼58% higher in high flow compared to low flow, but predation masked those differences. Predation mortality was primarily attributed to the blue crab Callinectes sapidus, whilst the mud crab Panopeus herbstii had no effect on recruit mortality. Recruit mortality from predation was high when recruit densities were high, but when recruit density was low, predation effects were not seen. Under high recruitment (supply), predation determined maximum population size and in low flow environments, recruitment success is likely determined by a combination of recruitment and resource limitation but not predation.Four processes are demonstrated: (1) Increases in flow rate positively affect recruitment success; (2) In high flow (recruitment) environments, resource availability is less important than predation; (3) predation is an important source of recruit mortality, but is dependent upon recruit density; and (4) recruitment and/or resource limitation is likely a major driver of population structure and functioning, modifying the interaction between predators and prey. Simultaneous testing of flow-mediated recruitment and predation was required to differentiate between the role of each process in determining population size. Our results reinforce the importance of propagule pressure, predation and post-settlement mortality as important determinants of population growth and persistence, but demonstrate that they should not be considered mutually exclusive

    Dlgap1 knockout mice exhibit alterations of the postsynaptic density and selective reductions in sociability

    Get PDF
    Abstract The scaffold protein DLGAP1 is localized at the post-synaptic density (PSD) of glutamatergic neurons and is a component of supramolecular protein complexes organized by PSD95. Gain-of-function variants of DLGAP1 have been associated with obsessive-compulsive disorder (OCD), while haploinsufficient variants have been linked to autism spectrum disorder (ASD) and schizophrenia in human genetic studies. We tested male and female Dlgap1 wild type (WT), heterozygous (HT), and knockout (KO) mice in a battery of behavioral tests: open field, dig, splash, prepulse inhibition, forced swim, nest building, social approach, and sucrose preference. We also used biochemical approaches to examine the role of DLGAP1 in the organization of PSD protein complexes. Dlgap1 KO mice were most notable for disruption of protein interactions in the PSD, and deficits in sociability. Other behavioral measures were largely unaffected. Our data suggest that Dlgap1 knockout leads to PSD disruption and reduced sociability, consistent with reports of DLGAP1 haploinsufficient variants in schizophrenia and ASD

    Immunological mechanism of action and clinical profile of disease-modifying treatments in multiple sclerosis.

    Get PDF
    Multiple sclerosis (MS) is a life-long, potentially debilitating disease of the central nervous system (CNS). MS is considered to be an immune-mediated disease, and the presence of autoreactive peripheral lymphocytes in CNS compartments is believed to be critical in the process of demyelination and tissue damage in MS. Although MS is not currently a curable disease, several disease-modifying therapies (DMTs) are now available, or are in development. These DMTs are all thought to primarily suppress autoimmune activity within the CNS. Each therapy has its own mechanism of action (MoA) and, as a consequence, each has a different efficacy and safety profile. Neurologists can now select therapies on a more individual, patient-tailored basis, with the aim of maximizing potential for long-term efficacy without interruptions in treatment. The MoA and clinical profile of MS therapies are important considerations when making that choice or when switching therapies due to suboptimal disease response. This article therefore reviews the known and putative immunological MoAs alongside a summary of the clinical profile of therapies approved for relapsing forms of MS, and those in late-stage development, based on published data from pivotal randomized, controlled trials

    Callous-unemotional traits moderate the relation between prenatal testosterone (2D:4D) and externalising behaviours in children

    Get PDF
    Children who exhibit callous-unemotional (CU) traits are identified as developing particularly severe forms of externalising behaviours (EB). A number of risk factors have been identified in the development of CU traits, including biological, physiological, and genetic factors. However, prenatal testosterone (PT) remains un-investigated, yet could signal fetal programming of a combination of CU/EB. Using the 2D:4D digit ratio, the current study examined whether CU traits moderated the relationship between PT and EB. Hand scans were obtained from 79 children aged between 5 and 6 years old whose parents completed the parent report ICU (Inventory of Callous Unemotional Traits) and SDQ (Strengths and Difficulties Questionnaire). CU traits were found to moderate the relationship between PT and EB so that children who were exposed to increased PT and were higher in CU traits exhibited more EB. Findings emphasize the importance of recognising that vulnerability for EB that is accompanied by callousness may arise before birth
    corecore