6,062 research outputs found

    Inclusion of Quantum Fluctuations in Wave Packet Dynamics

    Full text link
    We discuss a method by which quantum fluctuations can be included in microscopic transport models based on wave packets that are not energy eigenstates. By including the next-to-leading order term in the cumulant expansion of the statistical weight, which corresponds to the wave packets having Poisson energy distributions, we obtain a much improved global description of the quantum statistical properties of the many-body system. In the case of atomic nuclei, exemplified by 12C and 40Ca, the standard liquid-drop results are reproduced at low temperatures and a phase transformation to a fragment gas occurs as the temperature is raised. The treatment can be extended to dynamical scenarios by means of a Langevin force emulating the transitions between the wave packets. The general form of the associated transport coefficients is derived and it is shown that the appropriate microcanonical equilibrium distribution is achieved in the course of the time evolution. Finally, invoking Fermi's golden rule, we derive specific expressions for the transport coefficients and verify that they satisfy the fluctuation-dissipation theorem.Comment: uuencoded revtex body and 8 ps figures (16 pages total

    Phase diagram at finite temperature and quark density in the strong coupling region of lattice QCD for color SU(3)

    Get PDF
    We study the phase diagram of quark matter at finite temperature (T) and chemical potential (mu) in the strong coupling region of lattice QCD for color SU(3). Baryon has effects to extend the hadron phase to a larger mu direction relative to Tc at low temperatures in the strong coupling limit. With the 1/g^2 corrections, Tc is found to decrease rapidly as g decreases, and the shape of the phase diagram becomes closer to that expected in the real world.Comment: 4 pages, 4 figures. To appear in the proceedings of the 19th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, Shanghai, China, Nov. 14-20, 2006 (Quark Matter 2006

    Brown-Rho Scaling in the Strong Coupling Lattice QCD

    Full text link
    We examine the Brown-Rho scaling for meson masses in the strong coupling limit of lattice QCD with one species of staggered fermion. Analytical expression of meson masses is derived at finite temperature and chemical potential. We find that meson masses are approximately proportional to the equilibrium value of the chiral condensate, which evolves as a function of temperature and chemical potential.Comment: Prepared for Chiral Symmetry in Hadron and Nuclear Physics (Chiral07), Nov. 13-16, 2007, Osaka, Japa

    INCORPORATION OF QUANTUM STATISTICAL FEATURES IN MOLECULAR DYNAMICS

    Full text link
    We formulate a method for incorporating quantum fluctuations into molecular- dynamics simulations of many-body systems, such as those employed for energetic nuclear collision processes. Based on Fermi's Golden Rule, we allow spontaneous transitions to occur between the wave packets which are not energy eigenstates. The ensuing diffusive evolution in the space of the wave packet parameters exhibits appealing physical properties, including relaxation towards quantum- statistical equilibrium.Comment: 8 latex pages + 1 uuencoded ps figur

    Existence of Density Functionals for Excited States and Resonances

    Get PDF
    We show how every bound state of a finite system of identical fermions, whether a ground state or an excited one, defines a density functional. Degeneracies created by a symmetry group can be trivially lifted by a pseudo-Zeeman effect. When complex scaling can be used to regularize a resonance into a square integrable state, a DF also exists.Comment: 4 pages, no figure

    Three-body structure of the nnΛnn\Lambda system with ΛNΣN\Lambda N-\Sigma N coupling

    Get PDF
    The structure of the three-body nnΛnn\Lambda system, which has been observed recently by the HypHI collaboration, is investigated taking ΛNΣN\Lambda N-\Sigma N coupling explicitly into account. The YNYN and NNNN interactions employed in this work reproduce the binding energies of Λ3^3_{\Lambda}H, Λ4^4_{\Lambda}H and Λ4^4_{\Lambda}He. We do not find any Λ3n^3_{\Lambda}n bound state, which contradicts the interpretation of the data reported by the HypHI collaboration.Comment: To be publsihed in PRC as a Rapid communicatio
    corecore