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Existence of density functionals for excited states and resonances
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Abstract

We show how every bound state of a finite system of identical fermions, whether a ground state or an excited one, defines a density functional.
Degeneracies created by a symmetry group can be trivially lifted by a pseudo-Zeeman effect. When complex scaling can be used to regularize a
resonance into a square integrable state, a DF also exists.
© 2007 Elsevier B.V. All rights reserved.
The aim of density functional (DF) theory is to construct
a functional that provides the energy expectation value for a
correlated many-body state as a function of the one-body den-
sity, such that minimization of the DF leads to the exact ground
state (GS) density. Since the existence theorem proven for GSs
by Hohenberg and Kohn (HK) [1], its extension by Mermin [2]
to equilibrium at finite temperatures, and the further develop-
ment by Kohn and Sham (KS) [3] of an equivalent, effective,
independent particle problem, a considerable amount of work
has been dedicated to generalizations such as spin DFs [4],
functionals taking into account the symmetries of the Hamil-
tonian [5], calculations of excited state densities [6,7], treat-
ments of degeneracies or symmetries of excited states [8,9] and
quasiparticles [10]. For the reader interested in an even more
complete reading about both basic questions and applications,
we refer to [11–19].

DFs for resonant states have received much less attention.
We want to study this problem here. First we will address two
related issues, namely that of a unified theory for ground and
excited states and that of a theory for non-degenerate and de-
generate ones. Then a generalized existence theorem can be
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constructed by modifying the Hamiltonian in such a way that
the spectrum is shuffled but the eigenstates are left unchanged,
and by making a systematic use of the Legendre transform (LT)
for a detailed analysis of the density.

A reminder of the HK argument is useful here. Consider
a finite number A of identical fermions, with a

†
�r and a�r their

creation and annihilation operators at position �r , and the phys-
ical Hamiltonian, H = T + V + U, where T = ∑A

i=1 ti , V =∑A
i>j=1 vij and U = ∑A

i=1 ui are the kinetic, two-body inter-
action and one-body potential energies, respectively. For sim-
plicity, we consider such fermions as spinless and isospinless
and work at zero temperature. Both v and u may be either lo-
cal or non-local. Next, embed the system into an additional
one-body, external field, W = ∑A

i=1 wi , to observe its (non-
linear!) response. The Hamiltonian becomes K = H + W. It
is understood that w is local, 〈�r|w|�r ′〉 = w(r) δ(�r − �r ′), al-
though a DF theory with non-local potentials exists [20]. The
usual Rayleigh–Ritz variational principle, where |ψ〉 is just an
A-particle, antisymmetric, square normalized, otherwise unre-
stricted wave function, applied to FM = minψ F , with F =
〈ψ |K|ψ〉, generates ψmin, the exact GS of K, with the exact
eigenvalue FM . The minimum is assumed to be non-degenerate,
smooth, reached. Clearly, ψmin and FM are parametrized by w.

An infinitesimal variation δw triggers an infinitesimal displace-
ment δψmin, with δFM = 〈ψmin|δW|ψmin〉. There is no first or-
der contribution from δψmin. Define the one-body density ma-
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trix in coordinate representation, n(�r, �r ′) = 〈ψmin|a†
�r a�r ′ |ψmin〉.

Its diagonal, ρ(�r) = n(�r, �r), is the usual density deduced from
|ψmin|2 by integrating out all particles but one. Since δFM =∫

d�r ρ(�r)δw(�r), then δFM/δw(�r) = ρ(�r). Freeze t , v and u and
consider FM as a functional of w alone. The HK process then
consists in a Legendre transform of FM , based upon this essen-
tial result, δFM/δw = ρ. This LT involves two steps: (i) sub-
tract from FM the functional product of w and δFM/δw, i.e.
the integral

∫
d�r w(�r)ρ(�r), leaving FM = 〈ψmin|H|ψmin〉; then

(ii) set ρ, the “conjugate variable of w”, as the primary vari-
able rather than w; hence see FM as a functional of ρ. Step (ii)
is made possible by the one-to-one (1 ↔ 1) map between w

and ρ, under precautions such as the exclusion of trivial varia-
tions δw that modify w by a constant only, see for instance [16]
and [19]. The 1 ↔ 1 map is proven by the usual argument
ad absurdum [1]: if distinct potentials w and w′ generated
ψmin and ψ ′

min (distinct!) with the same ρ, then two contradic-
tory, strict inequalities would occur,

∫
d�r [w(�r)−w′(�r)]ρ(�r) <

FM − F ′
M , and,

∫
d�r [w(�r) − w′(�r)]ρ(�r) > FM − F ′

M . An in-
verse LT returns from FM to FM , because δFM/δρ = −w. Fi-
nally, the GS eigenvalue E0 of H obtains as E0 = minρ FM [ρ];
the GS wave function ψ0 of H is the wave function ψmin when
w vanishes; that density providing the minimum of FM is the
density of ψ0.

Consider now any excited bound eigenstate ψn of H, with
its eigenvalue En. Then, trivially, ψn is a GS of the semipos-
itive definite operator (H − En)

2. Since En is not known a
priori, consider rather an approximate value Ẽn, obtained by
any usual technique (configuration mixing, generator coordi-
nates, etc.) and assume that Ẽn is closer to En than to any other
eigenvalue Ep . Then ψn is a GS of (H − Ẽn)

2. The possible
degeneracy degree of this GS is the same whether one con-
siders H or (H − Ẽn)

2. Introduce now K̃ = (H − Ẽn)
2 + W.

If there is no degeneracy of either ψn or its continuation as a
functional of w, then the HK argument holds as well for K̃ as
it does for K. Hence a trivial existence proof for a DF concern-
ing ψn. But most often, ψn belongs to a degenerate multiplet.
Degeneracies are almost always due to an explicitly known
symmetry group of H. Notice however that the external po-
tential w does not need to show the same symmetry; hence,
in general for K̃, there is no degeneracy of its GS; a unique
ψmin emerges to minimize the expectation value of K̃. How-
ever, for that subset in the space of potentials where w shows
the symmetry responsible for the degeneracy, and in particu-
lar for the limit w → 0, precautions are necessary. Consider
therefore an (or several) additional label(s) g sorting out the
members ψng of the multiplet corresponding to that eigenvalue
(En − Ẽn)

2 of (H − Ẽn)
2. There is always an operator G re-

lated to the symmetry group, or a chain of operators Gj in the
reduction of the group by a chain of subgroups, which commute
with H and can be chosen to define g. For simplicity, assume
that one needs to consider one G only. Then define g as an
eigenvalue of G and assume, obviously, that the spectrum of G
is not degenerate, to avoid a reduction chain of subgroups. It
is obvious that, given some positive constant C, and given any
chosen γ among the values of g, there is no degeneracy for the
GS of (H− Ẽn)
2 +C(G−γ )2. Nor is there a degeneracy of the

GS of K̄ = (H − Ẽn)
2 + C(G − γ )2 + W = K̃ + C(G − γ )2,

even if w has the symmetry. When several labels become nec-
essary with a subgroup chain reduction, it is trivial to use a sum∑

j Cj (Gj − γj )
2 of “pusher” terms. A DF results, now from

the HK argument with K̄. We stress here that pusher terms, be-
cause they commute with H, do not change the eigenstates of
either H nor (H − Ẽn)

2. Only their eigenvalues are sorted out
and reorganized. Note that the pusher expectation value van-
ishes for ψnγ . Naturally, when w is finite, eigenstates of K̄
differ from those of K̃, but what counts is the information given
by the DF when w vanishes.

A simplification, avoiding cumbersome square operators H2,
is worth noticing. Consider the operator, K̂ = H + C(G −
γ )2 + W. At that limit, w → 0, there is always a choice of a
positive constant C which makes the lowest state with quan-
tum number γ become the GS. This leads to a more restricted
density functional, of interest for the study of an yrast line.

That DF, FM [ρ], based upon K̄, provides the expectation
value, FM [ρ] = 〈ψmin|[(H − Ẽn)

2 +C(G − γ )2]|ψmin〉, where
ψmin, square normalized to unity, is also constrained by the
facts that 〈ψmin|a†

�r a�r |ψmin〉 = ρ(�r) and K̄|ψmin〉 = ε|ψmin〉 for
the eigenvalue ε = FM . It may be interesting to find a DF
that provides the expectation value of H itself. This can be
done by taking the derivative of FM [ρ] with respect to Ẽn,
at constant ρ. We suppose that this derivative exists, which
is the case for a discrete spectrum at least. With the nota-
tion |ψ̇〉 = d|ψ〉/dẼn, and using the fact that 〈ψmin|W|ψ̇min〉 +
〈ψ̇min|W|ψmin〉 = ∫

w(�r)(dρ(�r)/dẼn)d�r = 0, one can write:

dFM [ρ]
dẼn

= 2〈ψmin|(Ẽn − H)|ψmin〉

+ 〈ψ̇min|(ε − W)|ψmin〉 + 〈ψmin|(ε − W)|ψ̇min〉
(1)= 2〈ψmin|(Ẽn − H)|ψmin〉.

Therefore we can define a new DF,

(2)FD[ρ] = Ẽn − dFM [ρ]
2dẼn

,

such that FD[ρ] = 〈ψmin|H|ψmin〉 and FD[ρnγ ] = En for the
density ρnγ of the eigenstate ψnγ of H at energy En. Further-
more one finds that δFD

δρ
[ρnγ ] = 0, because δ〈ψmin|

δρ
H|ψmin〉 +

〈ψmin|H δ|ψmin〉
δρ

= En
δ〈ψmin|ψmin〉

δρ
= 0 for ψmin = ψnγ . Hence

the functional FD[ρ] is stationary at the exact density ρ = ρnγ .
It is not expected to be minimal at ρnγ , however, unless the
resulting eigenstate corresponds to the absolute GS when w

vanishes.
Resonances may be defined as special eigenstates of H if

one uses an argument à la Gamow, allowing some radial Jacobi
coordinate r � 0 to show a diverging, exponential increase of
the resonance wave function at infinity of the form exp(ipr),
where the channel momentum p is complex and 	p < 0. It is
well known that those eigenvalues En describing resonances
are complex numbers, with 	En < 0. There have been exten-
sive discussions in the literature about the physical, or lack of,
meaning of such non-normalizable wave functions and about
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the wave packets which might be used to replace them, [21–24].
The point of view we adopt in this note is based upon the
Complex Scaling Method (CSM) [25–28]: a modest modifica-
tion of H transforms narrow resonances into square integrable
states; then there is no difference between the diagonalization
for bound states and that for resonances. The cost of the CSM,
however, is a loss of Hermiticity: the CSM Hamiltonian H′ is
non-Hermitian; it is somewhat similar to an optical Hamiltonian
[25–28].

Given the ket eigenstate equation, (H′ −En)|ψn〉 = 0, where
|ψn〉 is now a square integrable resonance wave function, we
can consider the Hermitian conjugate equation, 〈ψn|(H′† −
E∗

n) = 0. Clearly, ψn is a GS, as both a ket and a bra, of the
Hermitian and semipositive definite operator, Qexact = (H′† −
E∗

n)(H′ − En), with eigenvalue 0. Applying the same argument
as before, but now to Qexact instead of (H− Ẽn)

2, demonstrates
the existence of a DF around the targeted resonant state.

In practice one does not know En exactly. Given a suffi-
ciently close estimate Ẽn of En, an approximate GS eigen-
value |En − Ẽn|2 occurs for Qapprx = (H′† − Ẽ∗

n)(H′ − Ẽn),
at first order with respect to �Q = Qapprx − Qexact. Since ψn

is not a ket eigenstate of H′† = H′ − 2i	H′, it is also per-
turbed at first order in �Q. Still one can copy the construction
for FD[ρ], see Eq. (2); one interprets the operator d/dẼ∗

n as

d/d
Ẽn + id/d	Ẽn. The resulting functional FD[ρ] is linear in
H′. For Ẽn = En the functional will be stationary at the density
of the exact resonant state. While providing a proof of exis-
tence, the construction of the exact functional for H′ requires
the knowledge of the exact eigenvalue En. This might be an in-
convenient limitation but fortunately calculations of numbers
such as En are usually much easier and much more precise
than calculations of wave functions ψn and/or of their densi-
ties.

If the resonance has good quantum numbers (QNs) inducing
degeneracies, the same pusher terms as those which have been
discussed above can be added to create a unique GS, from the
operator, Qexact +C(G − γ )2. The HK argument, implemented
with the full operator, K̄′ = (H′† − E∗

n)(H′ − En) + C(G −
γ )2 + W, then proves that DFs exist for those resonances reg-
ularized by the CSM. Notice, however, that a simplified theory,
with an “yrast suited” operator K̂′, linear with respect to H′, is
not available here, since the restoration of Hermiticity forces a
product H′†H′ upon our formalism.

Now consider a special case of rather wide interest in nu-
clear and atomic physics. (i) Good parity of eigenstates of
H0 = T + V or H = H0 + U when u is restricted to be even, is
assumed in the following. Hence now eigendensities, quadratic
with respect to the states, have positive parities. (ii) Also as-
sume that the number of fermions is even. (iii) The QNs in
which we are interested in this section are the integer angu-
lar momentum L and magnetic label M of an eigenstate ΨLM

of H, where it is understood that the two-body v and one-
body u interactions conserve angular momentum. When w is
switched on and is not rotationally invariant, eigenstates of
K, K̃, or K̄ may still tolerate such labels LM by continu-
ity. First, consider w = 0. The density ρLM comes from the
product Ψ ∗
LMΨLM , but it does not transform under rotations as

an {LM} tensor. Rather, it is convenient to define “auxiliary
densities”, σλ0(�r) = ∑L

M=−L(−)L−M 〈L − MLM|λ0〉ρLM(�r),
where 〈L − MLM|λ0〉 is a usual Clebsch–Gordan coefficient.
Each function σλ0(�r) now behaves under rotations as a {λ0}
tensor. It can therefore be written as the product of a spheri-
cal harmonic and a radial form factor, σλ0(�r) = Yλ0(r̂)τλ(r) =√

(2λ + 1)/4πLλ(cosβ)τλ(r), where Lλ is a Legendre polyno-
mial and the angle β is the usual polar angle, counted from the
z-axis. Conversely,

(3)ρLM(�r) =
2L∑

λ=0

(−)L−M 〈L − MLM|λ0〉Yλ0(r̂)τλ(r).

This makes a “Fourier analysis” in angular space. Scalar
form factors τλ parametrize ρLM . Since L is here an inte-
ger and furthermore ρL−M = ρLM , and since Clebsch–Gordan
coefficients have the symmetry property 〈LML′M ′|λM ′′〉 =
(−)L+L′−λ〈L′M ′LM|λM ′′〉, then τλ = 0 for λ odd. There are
thus (L + 1) scalar functions, τ0, τ2, . . . , τ2L, to parametrize
(L + 1) distinct densities ρL0, ρL1, . . . , ρLL. Because of the
quadratic nature of the density, the even λ for angular “mod-
ulation” of ρ runs from 0 to twice L, with a “2L cut-off”;
a signature, necessary if not sufficient, for an “L-density”. Re-
instate now w as the LT conjugate of ρLM . It makes sense to
restrict w to expansions with (L + 1) arbitrary scalar form fac-
tors, w(�r) = ∑2L

evenλ=0 Yλ0(r̂)wλ(r). With inessential factors
(−)L−M 〈L − MLM|λ0〉 omitted, every pair {rτλ, rwλ} is con-
jugate. An eigendensity of K, K̃, K̄ may have an infinite number
of multipole form factors, but, with such a restricted w, only
τ0, τ2, . . . , τ2L are chosen by the LT relating FM and FM .

It can make even more sense to restrict w to one multipole
only, w(�r) = Yλ0(r̂)wλ(r), with λ = 0, or 2, . . . or 2L, to study
each multipole of ρ separately. For simplicity we now use the
easier version of the theory, with that operator K̂ which is suited
to the yrast line. Add therefore to H a pusher term ZLM leaving
intact the eigenstates, namely ZLM = B[�L · �L − L(L + 1)]2 +
C(Lz − M)2. Hence K̂LMλ = H + ZLM + Wλ = T + V + U +
ZLM + Wλ. Here the subscript λ specifies that w is reduced to
one multipole only, then �L is the total angular momentum op-
erator and Lz is its third component. This operator ZLM moves
the eigenvalues of H so that the lowest eigenstate of H with
quantum numbers {LM} becomes the GS of H + ZLM . The
commutator [H,ZLM ] vanishes indeed, and given A, t , v and u,
there are always positive, large enough values for B and C

that reshuffle the spectrum such that the lowest {LM} eigen-
state ΨLM becomes the GS of H+ZLM under this Zeeman-like
effect. We stress again that ZLM changes nothing in the eigen-
functions, eigendensities, etc., of all our Hamiltonians if w is
rotationally invariant. Furthermore, angular momentum num-
bers remain approximately valid for eigenstates of K̂LMλ if w

is weak, and the same numbers might still make sense as la-
bels by continuity when stronger deformations occur. Then the
usual ad absurdum argument generates a map wλ ↔ τλ, where
τλ(r) is the form factor of the λ-multipole component of the GS
density for K̂LMλ, leading to an exact DF, for every {LM} low-
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est state and every even λ between 0 and 2L. A generalization
to operators K̄LMλ, involving (H − Ẽn)

2, is trivial.
This note thus offers theorems for the existence of exact DFs

for every excited bound state, and even narrow resonances, and
every set of good QNs. Furthermore, the densities used as ar-
guments of our DFs do not need to be fully three-dimensional
ones; they can be radial form factors of multipole components
of the studied states.

We have not used the time dependent formalism, although
much progress has been made in deriving excitation energies
from it [30]. A generalization of our arguments to finite temper-
atures is plausible, however, and insofar as inverse temperature
may be viewed as an imaginary time, a time dependent theory
is not excluded.

For the discussion of differentiability, representability and
fine topological properties of the w- and ρ-spaces, we refer
again to [16]. Up to our understanding of the topology of the
variational spaces, flat or curved [29], of general use in nuclear,
atomic and molecular theory, the validity domain of our exis-
tence theorems is quite large.

Such theorems, though, suffer from the usual plague of
the field: constructive algorithms are missing. Empirical ap-
proaches are necessary. Is there a corresponding Kohn–Sham
theory (KST) [3]? In the usual KST, the calculation of the ki-
netic energy part of the DF is left to the solution of Hartree-
like equations. Besides the kinetic operator, the KS equations
contain a Hartree potential, completed by a potential modeling
exchange and correlation. Published KST formalisms are ded-
icated to estimates of the functional derivative, δVxc/δρ(�r), of
the exchange and correlation part of the DF, coming from the
two-body part V of the DF. This can be generalized, formally
at least. Our use of modified Hamiltonians, or even squares
of H, introduces one-, two-, three- and four-body operators, O1,
O2, O3 and O4, respectively. It is trivial to build a KS Hamil-
tonian H by retaining O1 and those Hartree operators coming
from local parts of O2, O3 and O4. Then one has to com-
plete H by designing generalizations of δVxc/δρ(�r) including
terms from the non-Hartree parts relating to O2, O3 and O4. For
our theorems where no squares of H occur, see the yrast suited
operator K̂ and Eq. (2), the nature of O2, O3, and O4, typically
coming from (�L . �L)2, is not forbidding, because of obvious fac-
torization properties. Hence a KST might be realizable for such
a simpler case. With squared Hamiltonians, however, a KST
seems more remote at present and one must have to be content,
temporarily at least, with just existence theorems. A systematic
analysis of solvable models on a basis of “modes” [19], how-
ever, may help to extrapolate such models into practical rules.
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B.G. Giraud, K. Katō, A. Ohnishi, J. Phys. A 37 (2004) 11575.
[29] B.G. Giraud, D.J. Rowe, J. Phys. Lett. 40 (1979) L177;

B.G. Giraud, D.J. Rowe, Nucl. Phys. A 330 (1979) 352.
[30] M. Petersilka, U.J. Gossmann, E.K.U. Gross, Phys. Rev. Lett. 76 (1996)

1212.


	Existence of density functionals for excited states and resonances
	Acknowledgements
	References


