245 research outputs found

    New insights into the dust formation of oxygen-rich AGB stars

    Full text link
    We observed the AGB stars S Ori, GX Mon and R Cnc with the MIDI instrument at the VLTI. We compared the data to radiative transfer models of the dust shells, where the central stellar intensity profiles were described by dust-free dynamic model atmospheres. We used Al2O3 and warm silicate grains. Our S Ori and R Cnc data could be well described by an Al2O3 dust shell alone, and our GX Mon data by a mix of an Al2O3 and a silicate shell. The best-fit parameters for S Ori and R Cnc included photospheric angular diameters Theta(Phot) of 9.7+/-1.0mas and 12.3+/-1.0mas, optical depths tau(V)(Al2O3) of 1.5+/-0.5 and 1.35+/-0.2, and inner radii R(in) of 1.9+/-0.3R(Phot) and 2.2+/-0.3R(Phot), respectively. Best-fit parameters for GX Mon were Theta(Phot)=8.7+/-1.3mas, tau(V)(Al2O3)=1.9+/-0.6, R(in)(Al2O3)=2.1+/-0.3R(Phot), tau(V)(silicate)=3.2+/-0.5, and R(in)(silicate)=4.6+/-0.2R(Phot). Our model fits constrain the chemical composition and the inner boundary radii of the dust shells, as well as the photospheric angular diameters. Our interferometric results are consistent with Al2O3 grains condensing close to the stellar surface at about 2 stellar radii, co-located with the extended atmosphere and SiO maser emission, and warm silicate grains at larger distances of about 4--5 stellar radii. We verified that the number densities of aluminum can match that of the best-fit Al2O3 dust shell near the inner dust radius in sufficiently extended atmospheres, confirming that Al2O3 grains can be seed particles for the further dust condensation. Together with literature data of the mass-loss rates, our sample is consistent with a hypothesis that stars with low mass-loss rates form primarily dust that preserves the spectral properties of Al2O3, and stars with higher mass-loss rate form dust with properties of warm silicates.Comment: 20 pages, 10 figure

    Structure and shaping processes within the extended atmospheres of AGB stars

    Full text link
    We present recent studies using the near-infrared instrument AMBER of the VLT Interferometer (VLTI) to investigate the structure and shaping processes within the extended atmosphere of AGB stars. Spectrally resolved near-infrared AMBER observations of the Mira variable S Ori have revealed wavelength-dependent apparent angular sizes. These data were successfully compared to dynamic model atmospheres, which predict wavelength-dependent radii because of geometrically extended molecular layers. Most recently, AMBER closure phase measurements of several AGB stars have also revealed wavelength-dependent deviations from 0/180 deg., indicating deviations from point symmetry. The variation of closure phase with wavelength indicates a complex non-spherical stratification of the extended atmosphere, and may reveal whether observed asymmetries are located near the photosphere or in the outer molecular layers. Concurrent observations of SiO masers located within the extended molecular layers provide us with additional information on the morphology, conditions, and kinematics of this shell. These observations promise to provide us with new important insights into the shaping processes at work during the AGB phase. With improved imaging capabilities at the VLTI, we expect to extend the successful story of imaging studies of planetary nebulae to the photosphere and extended outer atmosphere of AGB stars.Comment: 6 pages, Proc. of "Asymmetric Planetary Nebulae V", A.A. Zijlstra, F. Lykou, I. McDonald, and E. Lagadec (eds.), Jodrell Bank Centre for Astrophysics, Manchester, UK, 201

    Mid-infrared interferometric monitoring of evolved stars - The dust shell around the Mira variable RR Aql at 13 epochs

    Full text link
    We obtained 13 epochs of mid-infrared interferometry with the MIDI instrument at the VLTI between April 2004 and July 2007, covering pulsation phases 0.45-0.85 within four cycles. The data are modeled with a radiative transfer model of the dust shell where the central stellar intensity profile is described by a series of dust-free dynamic model atmospheres based on self-excited pulsation models. We examined two dust species, silicate and Al2O3 grains. We performed model simulations using variations in model phase and dust shell parameters to investigate the expected variability of our photometric and interferometric data. The observed visibility spectra do not show any indication of variations as a function of pulsation phase and cycle. The observed photometry spectra may indicate intracycle and cycle-to-cycle variations at the level of 1-2 standard deviations. The best-fitting model for our average pulsation phase of 0.64+/-0.15 includes the dynamic model atmosphere M21n (T_model=2550 K) with a photospheric angular diameter of 7.6+/-0.6 mas, and a silicate dust shell with an optical depth of 2.8+/-0.8, an inner radius of 4.1+/-0.7 R_Phot, and a power-law index of the density distribution of 2.6+/-0.3. The addition of an Al2O3 dust shell did not improve the model fit. The photospheric angular diameter corresponds to a radius of 520^+230_-140 R_sun and an effective temperature of ~ 2420+/-200 K. Our modeling simulations confirm that significant visibility variations are not expected for RR Aql at mid-infrared wavelengths within our uncertainties. We conclude that our RR Aql data can be described by a pulsating atmosphere surrounded by a silicate dust shell. The effects of the pulsation on the mid-infrared flux and visibility values are expected to be less than about 25% and 20%, respectively, and are too low to be detected within our measurement uncertainties.Comment: 16 pages, 14 figures. Accepted for publication in A&

    AMBER observations of the AGB star RS Cap: extended atmosphere and comparison with stellar models

    Full text link
    We report on K-band VLTI/AMBER observations at medium spectral resolution (\sim1500) of RS Capricorni, an M6/M7III semi-regular AGB star. From the spectrally-dispersed visibilities, we measure the star diameter as a function of observing wavelength from 2.13 to 2.47 microns. We derive a Rosseland angular diameter of 7.95±0.077.95 \pm 0.07 mas, which corresponds to an effective temperature of 3160±1603160 \pm 160 K. We detect size variations of around 10% in the CO band heads, indicating strong opacity effects of CO in the stellar photosphere. We also detect a linear increase of the size as a function of wavelength, beginning at 2.29 microns. Models of the stellar atmosphere, based on the mass of the star as estimated from stellar-evolution models, predict CO-size effects about half of those observed, and cannot reproduce the linear size increase with wavelength, redward of 2.29 microns. We are able to model this linear size increase with the addition of an extended water-vapor envelope around the star. However, we are not able to fit the data in the CO bandheads. Either the mass of the star is overestimated by the stellar-evolution models and/or there is an additional extended CO envelope in the outer part of the atmosphere. In any case, neither the water-vapor envelope, nor the CO envelope, can be explained using the current models.Comment: 8 pages, 6 figures. Accepted for publication in A&

    Further detections of OH masers in carbon stars with silicate features

    Get PDF
    A sample of J-type carbon stars was searched for OH maser emission. The new detection of three OH lines towards two silicate carbon stars is reported. In V778 Cyg, previously known as the main-lines (1665 and 1667 MHz) maser source, the satellite 1612 MHz emission was discovered while in NSV 2814 the main OH lines were detected. The presence of OH maser lines confirms the former suggestion that oxygen-rich material is located in the vicinity (\approx 10151610^{15-16} cm) of silicate carbon stars.Comment: LaTeX2e, 4 pages with 2 figure

    UBVJHKLM photometry and modeling of R Coronae Borealis

    Get PDF
    We present the results of UBVJHKLM photometry of R CrB spanning the period from 1976 to 2001. Studies of the optical light curve have shown no evidence of any stable harmonics in the variations of the stellar emission. In the L band we found semi-regular oscillations with the two main periods of ~3.3 yr and 11.9 yr and the full amplitude of ~0.8 mag and ~0.6 mag, respectively. The colors of the warm dust shell (resolved by Ohnaka et al. 2001) are found to be remarkably stable in contrast to its brightness. This indicates that the inner radius is a constant, time-independent characteristic of the dust shell. The observed behavior of the IR light curve is mainly caused by the variation of the optical thickness of the dust shell within the interval \tau(V)= 0.2-0.4. Anticorrelated changes of the optical brightness (in particular with P ~ 3.3 yr) have not been found. Their absence suggests that the stellar wind of R CrB deviates from spherical symmetry. The light curves suggest that the stellar wind is variable. The variability of the stellar wind and the creation of dust clouds may be caused by some kind of activity on the stellar surface. With some time lag, periods of increased mass-loss cause an increase in the dust formation rate at the inner boundary of the extended dust shell and an increase in its IR brightness. We have derived the following parameters of the dust shell (at mean brightness) by radiative transfer modeling: inner dust shell radius r_in ~ 110 R_*, temperature T_dust(r_in) ~ 860 K, dust density \rho_dust(r_in) ~ 1.1x10^{-20} g cm^-3, optical depth \tau(V) ~ 0.32 at 0.55 micron, mean dust formation rate [dM/dt]_dust ~ 3.1x10^-9 M_sun / yr, mass-loss rate [dM/dt]_gas ~ 2.1x10^-7 M_sun / yr, size of the amorphous carbon grains <(~) 0.01 micron, and B-V ~ -0.28.Comment: 9 pages, 6 figures, accepted for publication in A&

    VLTI observations of the dust geometry around R Coronae Borealis stars

    Get PDF
    We are investigating the formation and evolution of dust around the hydrogen-deficient supergiants known as R Coronae Borealis (RCB) stars. We aim to determine the connection between the probable merger past of these stars and their current dust-production activities. We carried out high-angular resolution interferometric observations of three RCB stars, namely RY Sgr, V CrA, and V854 Cen with the mid-IR interferometer, MIDI on the VLTI, using two telescope pairs. The baselines ranged from 30 to 60 m, allowing us to probe the dusty environment at very small spatial scales (~ 50 mas or 400 stellar radii). The observations of the RCB star dust environments were interpreted using both geometrical models and one-dimensional radiative transfer codes. From our analysis we find that asymmetric circumstellar material is apparent in RY Sgr, may also exist in V CrA, and is possible for V854 Cen. Overall, we find that our observations are consistent with dust forming in clumps ejected randomly around the RCB star so that over time they create a spherically symmetric distribution of dust. However, we conclude that the determination of whether there is a preferred plane of dust ejection must wait until a time series of observations are obtained.Comment: Accepted for publication in MNRAS; 14 pages, 10 figures, 6 table

    Detection of an inner gaseous component in a Herbig Be star accretion disk: Near- and mid-infrared spectro-interferometry and radiative transfer modeling of MWC 147

    Full text link
    We study the geometry and the physical conditions in the inner (AU-scale) circumstellar region around the young Herbig Be star MWC 147 using long-baseline spectro-interferometry in the near-infrared (NIR K-band, VLTI/AMBER observations and PTI archive data) as well as the mid-infrared (MIR N-band, VLTI/MIDIobservations). The emission from MWC 147 is clearly resolved and has a characteristic physical size of approx. 1.3 AU and 9 AU at 2.2 micron and 11 micron respectively (Gaussian diameter). The spectrally dispersed AMBER and MIDI interferograms both show a strong increase in the characteristic size towards longer wavelengths, much steeper than predicted by analytic disk models assuming power-law radial temperature distributions. We model the interferometric data and the spectral energy distribution of MWC 147 with 2-D, frequency-dependent radiation transfer simulations. This analysis shows that models of spherical envelopes or passive irradiated Keplerian disks (with vertical or curved puffed-up inner rim) can easily fit the SED, but predict much lower visibilities than observed; the angular size predicted by such models is 2 to 4 times larger than the size derived from the interferometric data, so these models can clearly be ruled out. Models of a Keplerian disk with optically thick gas emission from an active gaseous disk (inside the dust sublimation zone), however, yield a good fit of the SED and simultaneously reproduce the absolute level and the spectral dependence of the NIR and MIR visibilities. We conclude that the NIR continuum emission from MWC 147 is dominated by accretion luminosity emerging from an optically thick inner gaseous disk, while the MIR emission also contains contributions from the outer, irradiated dust disk.Comment: 44 pages, 15 figures, accepted for publication in The Astrophysical Journal. The quality of the figures was slightly reduced in order to comply with the astro-ph file-size restrictions. You can find a high-quality version of the paper at http://www.mpifr-bonn.mpg.de/staff/skraus/papers/mwc147.pd

    Dynamics of earthquake nucleation process represented by the Burridge-Knopoff model

    Full text link
    Dynamics of earthquake nucleation process is studied on the basis of the one-dimensional Burridge-Knopoff (BK) model obeying the rate- and state-dependent friction (RSF) law. We investigate the properties of the model at each stage of the nucleation process, including the quasi-static initial phase, the unstable acceleration phase and the high-speed rupture phase or a mainshock. Two kinds of nucleation lengths L_sc and L_c are identified and investigated. The nucleation length L_sc and the initial phase exist only for a weak frictional instability regime, while the nucleation length L_c and the acceleration phase exist for both weak and strong instability regimes. Both L_sc and L_c are found to be determined by the model parameters, the frictional weakening parameter and the elastic stiffness parameter, hardly dependent on the size of an ensuing mainshock. The sliding velocity is extremely slow in the initial phase up to L_sc, of order the pulling speed of the plate, while it reaches a detectable level at a certain stage of the acceleration phase. The continuum limits of the results are discussed. The continuum limit of the BK model lies in the weak frictional instability regime so that a mature homogeneous fault under the RSF law always accompanies the quasi-static nucleation process. Duration times of each stage of the nucleation process are examined. The relation to the elastic continuum model and implications to real seismicity are discussed.Comment: Title changed. Changes mainly in abstract and in section 1. To appear in European Physical Journal

    The extended atmospheres of Mira variables probed by VLTI, VLBA, and APEX

    Full text link
    We present an overview on our project to study the extended atmospheres and dust formation zones of Mira stars using coordinated observations with the Very Large Telescope Interferometer (VLTI), the Very Long Baseline Array (VLBA), and the Atacama Pathfinder Experiment (APEX). The data are interpreted using an approach of combining recent dynamic model atmospheres with a radiative transfer model of the dust shell, and combining the resulting model structure with a maser propagation model.Comment: 5 pages, to appear in Proc. of "Why Galaxies Care About AGB Stars II", ASP Conf. Ser., Franz Kerschbaum, Thomas Lebzelter, and Bob Wing (eds.
    corecore