812 research outputs found

    Fermi Edge Singularities and Backscattering in a Weakly Interacting 1D Electron Gas

    Full text link
    The photon-absorption edge in a weakly interacting one-dimensional electron gas is studied, treating backscattering of conduction electrons from the core hole exactly. Close to threshold, there is a power-law singularity in the absorption, I(ϵ)ϵαI(\epsilon) \propto \epsilon^{-\alpha}, with α=3/8+δ+/πδ+2/2π2\alpha = 3/8 + \delta_+/\pi - \delta_+^2/2\pi^2 where δ+\delta_+ is the forward scattering phase shift of the core hole. In contrast to previous theories, α\alpha is finite (and universal) in the limit of weak core hole potential. In the case of weak backscattering U(2kF)U(2k_F), the exponent in the power-law dependence of absorption on energy crosses over to a value α=δ+/πδ+2/2π2\alpha = \delta_+/\pi - \delta_+^2/2\pi^2 above an energy scale ϵ[U(2kF)]1/γ\epsilon^* \sim [U(2k_F)]^{1/\gamma}, where γ\gamma is a dimensionless measure of the electron-electron interactions.Comment: 8 pages + 1 postscript figure, preprint TPI-MINN-93/40-

    Tomonaga-Luttinger features in the resonant Raman spectra of quantum wires

    Full text link
    The differential cross section for resonant Raman scattering from the collective modes in a one dimensional system of interacting electrons is calculated non-perturbatively using the bosonization method. The results indicate that resonant Raman spectroscopy is a powerful tool for studying Tomonaga-Luttinger liquid behaviour in quasi-one dimensional electron systems.Comment: 4 pages, no figur

    Quantum Criticality via Magnetic Branes

    Full text link
    Holographic methods are used to investigate the low temperature limit, including quantum critical behavior, of strongly coupled 4-dimensional gauge theories in the presence of an external magnetic field, and finite charge density. In addition to the metric, the dual gravity theory contains a Maxwell field with Chern-Simons coupling. In the absence of charge, the magnetic field induces an RG flow to an infrared AdS3×R2_3 \times {\bf R}^2 geometry, which is dual to a 2-dimensional CFT representing strongly interacting fermions in the lowest Landau level. Two asymptotic Virasoro algebras and one chiral Kac-Moody algebra arise as {\sl emergent symmetries} in the IR. Including a nonzero charge density reveals a quantum critical point when the magnetic field reaches a critical value whose scale is set by the charge density. The critical theory is probed by the study of long-distance correlation functions of the boundary stress tensor and current. All quantities of major physical interest in this system, such as critical exponents and scaling functions, can be computed analytically. We also study an asymptotically AdS6_6 system whose magnetic field induced quantum critical point is governed by a IR Lifshitz geometry, holographically dual to a D=2+1 field theory. The behavior of these holographic theories shares important similarities with that of real world quantum critical systems obtained by tuning a magnetic field, and may be relevant to materials such as Strontium Ruthenates.Comment: To appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye

    Theory of the first-order isostructural valence phase transitions in mixed valence compounds YbIn_{x}Ag_{1-x}Cu_{4}

    Full text link
    For describing the first-order isostructural valence phase transition in mixed valence compounds we develop a new approach based on the lattice Anderson model. We take into account the Coulomb interaction between localized f and conduction band electrons and two mechanisms of electron-lattice coupling. One is related to the volume dependence of the hybridization. The other is related to local deformations produced by f- shell size fluctuations accompanying valence fluctuations. The large f -state degeneracy allows us to use the 1/N expansion method. Within the model we develop a mean-field theory for the first-order valence phase transition in YbInCu_{4}. It is shown that the Coulomb interaction enhances the exchange interaction between f and conduction band electron spins and is the driving force of the phase transition. A comparison between the theoretical calculations and experimental measurements of the valence change, susceptibility, specific heat, entropy, elastic constants and volume change in YbInCu_{4} and YbAgCu_{4} are presented, and a good quantitative agreement is found. On the basis of the model we describe the evolution from the first-order valence phase transition to the continuous transition into the heavy-fermion ground state in the series of compounds YbIn_{1-x}Ag_{x}Cu_{4}. The effect of pressure on physical properties of YbInCu_{4} is studied and the H-T phase diagram is found.Comment: 17 pages RevTeX, 9 Postscript figures, to be submitted to Phys.Rev.

    Infinitesimal incommensurate stripe phase in an axial next-nearest-neighbor Ising model in two dimensions

    Full text link
    An axial next-nearest-neighbor Ising (ANNNI) model is studied by using the non-equilibrium relaxation method. We find that the incommensurate stripe phase between the ordered phase and the paramagnetic phase is negligibly narrow or may vanish in the thermodynamic limit. The phase transition is the second-order transition if approached from the ordered phase, and it is of the Kosterlitz-Thouless type if approached from the paramagnetic phase. Both transition temperatures coincide with each other within the numerical errors. The incommensurate phase which has been observed previously is a paramagnetic phase with a very long correlation length (typically ξ500\xi\ge 500). We could resolve this phase by treating very large systems (6400×6400\sim 6400\times 6400), which is first made possible by employing the present method.Comment: 12 pages, 10 figures. To appear in Phys.Rev.

    Breakup Reactions of 11Li within a Three-Body Model

    Get PDF
    We use a three-body model to investigate breakup reactions of 11Li (n+n+9Li) on a light target. The interaction parameters are constrained by known properties of the two-body subsystems, the 11Li binding energy and fragmentation data. The remaining degrees of freedom are discussed. The projectile-target interactions are described by phenomenological optical potentials. The model predicts dependence on beam energy and target, differences between longitudinal and transverse momentum distributions and provides absolute values for all computed differential cross sections. We give an almost complete series of observables and compare with corresponding measurements. Remarkably good agreement is obtained. The relative neutron-9Li p-wave content is about 40%. A p-resonance, consistent with measurements at about 0.5 MeV of width about 0.4 MeV, seems to be necessary. The widths of the momentum distributions are insensitive to target and beam energy with a tendency to increase towards lower energies. The transverse momentum distributions are broader than the longitudinal due to the diffraction process. The absolute values of the cross sections follow the neutron-target cross sections and increase strongly for beam energies decreasing below 100 MeV/u.Comment: 19 pages, 14 figures, RevTeX, psfig.st

    Partonic flow and ϕ\phi-meson production in Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the ϕ\phi-meson elliptic flow (v2(pT)v_{2}(p_{T})) and high statistics pTp_{T} distributions for different centralities from sNN\sqrt{s_{NN}} = 200 GeV Au+Au collisions at RHIC. In minimum bias collisions the v2v_{2} of the ϕ\phi meson is consistent with the trend observed for mesons. The ratio of the yields of the Ω\Omega to those of the ϕ\phi as a function of transverse momentum is consistent with a model based on the recombination of thermal ss quarks up to pT4p_{T}\sim 4 GeV/cc, but disagrees at higher momenta. The nuclear modification factor (RCPR_{CP}) of ϕ\phi follows the trend observed in the KS0K^{0}_{S} mesons rather than in Λ\Lambda baryons, supporting baryon-meson scaling. Since ϕ\phi-mesons are made via coalescence of seemingly thermalized ss quarks in central Au+Au collisions, the observations imply hot and dense matter with partonic collectivity has been formed at RHIC.Comment: 6 pages, 4 figures, submit to PR

    Measurement of open charm production in dd+Au collisions at sNN\sqrt{s_{NN}}=200 GeV

    Full text link
    We present the first comprehensive measurement of D0,D+,D+D^{0}, D^{+}, D^{*+} and their charge conjugate states at mid-rapidity in dd+Au collisions at sNN\sqrt{s_{_{NN}}}=200 GeV using the STAR TPC. The directly measured open charm multiplicity distribution covers a broad transverse momentum region of 0<pT<11<p_{T}<11 GeV/cc. The measured dN/dydN/dy at mid-rapidity for D0D^{0} is 0.0265±0.0036(stat.)±0.0071(syst.)0.0265\pm 0.0036 (stat.) \pm 0.0071 (syst.) and the measured D+/D0D^{*+}/D^{0} and D+/D0D^{+}/D^{0} ratios are approximately equal with a magnitude of 0.40±0.09(stat.)±0.13(syst.)0.40\pm 0.09(stat.) \pm 0.13(syst.). The total ccˉc\bar{c} cross section per nucleon-nucleon collision extracted from this study is 1.18±0.21(stat.)±0.39(syst.)1.18 \pm 0.21(stat.) \pm 0.39(syst.) mb. The direct measurement of open charm production is consistent with STAR single electron data. This cross section is higher than expectations from PYTHIA and other pQCD calculations. The measured pTp_{T} distribution is harder than the pQCD prediction using the Peterson fragmentation function.Comment: Quark Matter 2004 Proceeding

    Measurement of the Bottom contribution to non-photonic electron production in p+pp+p collisions at s\sqrt{s} =200 GeV

    Get PDF
    The contribution of BB meson decays to non-photonic electrons, which are mainly produced by the semi-leptonic decays of heavy flavor mesons, in p+pp+p collisions at s=\sqrt{s} = 200 GeV has been measured using azimuthal correlations between non-photonic electrons and hadrons. The extracted BB decay contribution is approximately 50% at a transverse momentum of pT5p_{T} \geq 5 GeV/cc. These measurements constrain the nuclear modification factor for electrons from BB and DD meson decays. The result indicates that BB meson production in heavy ion collisions is also suppressed at high pTp_{T}.Comment: 6 pages, 4 figures, accepted by PR

    Azimuthal anisotropy: the higher harmonics

    Full text link
    We report the first observations of the fourth harmonic (v_4) in the azimuthal distribution of particles at RHIC. The measurement was done taking advantage of the large elliptic flow generated at RHIC. The integrated v_4 is about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8) harmonics upper limits on the magnitudes are reported.Comment: 4 pages, 6 figures, contribution to the Quark Matter 2004 proceeding
    corecore