812 research outputs found
Fermi Edge Singularities and Backscattering in a Weakly Interacting 1D Electron Gas
The photon-absorption edge in a weakly interacting one-dimensional electron
gas is studied, treating backscattering of conduction electrons from the core
hole exactly. Close to threshold, there is a power-law singularity in the
absorption, , with where is the forward scattering
phase shift of the core hole. In contrast to previous theories, is
finite (and universal) in the limit of weak core hole potential. In the case of
weak backscattering , the exponent in the power-law dependence of
absorption on energy crosses over to a value above an energy scale , where is a dimensionless measure of the
electron-electron interactions.Comment: 8 pages + 1 postscript figure, preprint TPI-MINN-93/40-
Tomonaga-Luttinger features in the resonant Raman spectra of quantum wires
The differential cross section for resonant Raman scattering from the
collective modes in a one dimensional system of interacting electrons is
calculated non-perturbatively using the bosonization method. The results
indicate that resonant Raman spectroscopy is a powerful tool for studying
Tomonaga-Luttinger liquid behaviour in quasi-one dimensional electron systems.Comment: 4 pages, no figur
Quantum Criticality via Magnetic Branes
Holographic methods are used to investigate the low temperature limit,
including quantum critical behavior, of strongly coupled 4-dimensional gauge
theories in the presence of an external magnetic field, and finite charge
density. In addition to the metric, the dual gravity theory contains a Maxwell
field with Chern-Simons coupling. In the absence of charge, the magnetic field
induces an RG flow to an infrared AdS geometry, which is
dual to a 2-dimensional CFT representing strongly interacting fermions in the
lowest Landau level. Two asymptotic Virasoro algebras and one chiral Kac-Moody
algebra arise as {\sl emergent symmetries} in the IR. Including a nonzero
charge density reveals a quantum critical point when the magnetic field reaches
a critical value whose scale is set by the charge density. The critical theory
is probed by the study of long-distance correlation functions of the boundary
stress tensor and current. All quantities of major physical interest in this
system, such as critical exponents and scaling functions, can be computed
analytically. We also study an asymptotically AdS system whose magnetic
field induced quantum critical point is governed by a IR Lifshitz geometry,
holographically dual to a D=2+1 field theory. The behavior of these holographic
theories shares important similarities with that of real world quantum critical
systems obtained by tuning a magnetic field, and may be relevant to materials
such as Strontium Ruthenates.Comment: To appear in Lect. Notes Phys. "Strongly interacting matter in
magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A.
Schmitt, H.-U. Ye
Theory of the first-order isostructural valence phase transitions in mixed valence compounds YbIn_{x}Ag_{1-x}Cu_{4}
For describing the first-order isostructural valence phase transition in
mixed valence compounds we develop a new approach based on the lattice Anderson
model. We take into account the Coulomb interaction between localized f and
conduction band electrons and two mechanisms of electron-lattice coupling. One
is related to the volume dependence of the hybridization. The other is related
to local deformations produced by f- shell size fluctuations accompanying
valence fluctuations. The large f -state degeneracy allows us to use the 1/N
expansion method. Within the model we develop a mean-field theory for the
first-order valence phase transition in YbInCu_{4}. It is shown that the
Coulomb interaction enhances the exchange interaction between f and conduction
band electron spins and is the driving force of the phase transition. A
comparison between the theoretical calculations and experimental measurements
of the valence change, susceptibility, specific heat, entropy, elastic
constants and volume change in YbInCu_{4} and YbAgCu_{4} are presented, and a
good quantitative agreement is found. On the basis of the model we describe the
evolution from the first-order valence phase transition to the continuous
transition into the heavy-fermion ground state in the series of compounds
YbIn_{1-x}Ag_{x}Cu_{4}. The effect of pressure on physical properties of
YbInCu_{4} is studied and the H-T phase diagram is found.Comment: 17 pages RevTeX, 9 Postscript figures, to be submitted to Phys.Rev.
Infinitesimal incommensurate stripe phase in an axial next-nearest-neighbor Ising model in two dimensions
An axial next-nearest-neighbor Ising (ANNNI) model is studied by using the
non-equilibrium relaxation method. We find that the incommensurate stripe phase
between the ordered phase and the paramagnetic phase is negligibly narrow or
may vanish in the thermodynamic limit. The phase transition is the second-order
transition if approached from the ordered phase, and it is of the
Kosterlitz-Thouless type if approached from the paramagnetic phase. Both
transition temperatures coincide with each other within the numerical errors.
The incommensurate phase which has been observed previously is a paramagnetic
phase with a very long correlation length (typically ). We could
resolve this phase by treating very large systems (),
which is first made possible by employing the present method.Comment: 12 pages, 10 figures. To appear in Phys.Rev.
Breakup Reactions of 11Li within a Three-Body Model
We use a three-body model to investigate breakup reactions of 11Li (n+n+9Li)
on a light target. The interaction parameters are constrained by known
properties of the two-body subsystems, the 11Li binding energy and
fragmentation data. The remaining degrees of freedom are discussed. The
projectile-target interactions are described by phenomenological optical
potentials. The model predicts dependence on beam energy and target,
differences between longitudinal and transverse momentum distributions and
provides absolute values for all computed differential cross sections. We give
an almost complete series of observables and compare with corresponding
measurements. Remarkably good agreement is obtained. The relative neutron-9Li
p-wave content is about 40%. A p-resonance, consistent with measurements at
about 0.5 MeV of width about 0.4 MeV, seems to be necessary. The widths of the
momentum distributions are insensitive to target and beam energy with a
tendency to increase towards lower energies. The transverse momentum
distributions are broader than the longitudinal due to the diffraction process.
The absolute values of the cross sections follow the neutron-target cross
sections and increase strongly for beam energies decreasing below 100 MeV/u.Comment: 19 pages, 14 figures, RevTeX, psfig.st
Partonic flow and -meson production in Au+Au collisions at = 200 GeV
We present first measurements of the -meson elliptic flow
() and high statistics distributions for different
centralities from = 200 GeV Au+Au collisions at RHIC. In
minimum bias collisions the of the meson is consistent with the
trend observed for mesons. The ratio of the yields of the to those of
the as a function of transverse momentum is consistent with a model
based on the recombination of thermal quarks up to GeV/,
but disagrees at higher momenta. The nuclear modification factor () of
follows the trend observed in the mesons rather than in
baryons, supporting baryon-meson scaling. Since -mesons are
made via coalescence of seemingly thermalized quarks in central Au+Au
collisions, the observations imply hot and dense matter with partonic
collectivity has been formed at RHIC.Comment: 6 pages, 4 figures, submit to PR
Measurement of open charm production in +Au collisions at =200 GeV
We present the first comprehensive measurement of and
their charge conjugate states at mid-rapidity in +Au collisions at
=200 GeV using the STAR TPC. The directly measured open charm
multiplicity distribution covers a broad transverse momentum region of
0 GeV/. The measured at mid-rapidity for is
and the measured
and ratios are approximately equal with a magnitude of . The total cross section per
nucleon-nucleon collision extracted from this study is mb. The direct measurement of open charm production is
consistent with STAR single electron data. This cross section is higher than
expectations from PYTHIA and other pQCD calculations. The measured
distribution is harder than the pQCD prediction using the Peterson
fragmentation function.Comment: Quark Matter 2004 Proceeding
Measurement of the Bottom contribution to non-photonic electron production in collisions at =200 GeV
The contribution of meson decays to non-photonic electrons, which are
mainly produced by the semi-leptonic decays of heavy flavor mesons, in
collisions at 200 GeV has been measured using azimuthal
correlations between non-photonic electrons and hadrons. The extracted
decay contribution is approximately 50% at a transverse momentum of GeV/. These measurements constrain the nuclear modification factor for
electrons from and meson decays. The result indicates that meson
production in heavy ion collisions is also suppressed at high .Comment: 6 pages, 4 figures, accepted by PR
Azimuthal anisotropy: the higher harmonics
We report the first observations of the fourth harmonic (v_4) in the
azimuthal distribution of particles at RHIC. The measurement was done taking
advantage of the large elliptic flow generated at RHIC. The integrated v_4 is
about a factor of 10 smaller than v_2. For the sixth (v_6) and eighth (v_8)
harmonics upper limits on the magnitudes are reported.Comment: 4 pages, 6 figures, contribution to the Quark Matter 2004 proceeding
- …
