192 research outputs found
Coupling methylammonium and formamidinium cations with halide anions: Hybrid orbitals, hydrogen bonding, and the role of dynamics
The electronic structures of four precursors for organicâinorganic hybrid perovskites, namely, methylammonium chloride and iodide, as well as formamidinium bromide and iodide, are investigated by X-ray emission (XE) spectroscopy at the carbon and nitrogen K-edges. The XE spectra are analyzed based on density functional theory calculations. We simulate the XE spectra at the KohnâSham level for ground-state geometries and carry out detailed analyses of the molecular orbitals and the electronic density of states to give a thorough understanding of the spectra. Major parts of the spectra can be described by the model of the corresponding isolated organic cation, whereas high-emission energy peaks in the nitrogen K-edge XE spectra arise from electronic transitions involving hybrids of the molecular and atomic orbitals of the cations and halides, respectively. We find that the interaction of the methylammonium cation is stronger with the chlorine than with the iodine anion. Furthermore, our detailed theoretical analysis highlights the strong influence of ultrafast proton dynamics in the core-excited states, which is an intrinsic effect of the XE process. The inclusion of this effect is necessary for an accurate description of the experimental nitrogen K-edge X-ray emission spectra and gives information on the hydrogen-bonding strengths in the different precursor materials
Understanding X-ray absorption in liquid water using triple excitations in multilevel coupled cluster theory
X-ray absorption (XA) spectroscopy is an essential experimental tool to investigate the local structure of liquid water. Interpretation of the experiment poses a significant challenge and requires a quantitative theoretical description. High-quality theoretical XA spectra require reliable molecular dynamics simulations and accurate electronic structure calculations. Here, we present the first successful application of coupled cluster theory to model the XA spectrum of liquid water. We overcome the computational limitations on system size by employing a multilevel coupled cluster framework for large molecular systems. Excellent agreement with the experimental spectrum is achieved by including triple excitations in the wave function and using molecular structures from state-of-the-art path-integral molecular dynamics. We demonstrate that an accurate description of the electronic structure within the first solvation shell is sufficient to successfully model the XA spectrum of liquid water within the multilevel framework. Furthermore, we present a rigorous charge transfer analysis of the XA spectrum, which is reliable due to the accuracy and robustness of the electronic structure methodology. This analysis aligns with previous studies regarding the character of the prominent features of the XA spectrum of liquid water
Carbon K-edge x-ray emission spectroscopy of gas phase ethylenic molecules
We report on the C K-edge x-ray absorption spectra and the resonant (RXES) and non-resonant (NXES) x-ray emission spectra of ethylene, allene and butadiene in the gas phase. The RXES and NXES show clear differences for the different molecules. Overall both types of spectra are more structured for ethylene and allene, than for butadiene. Using density functional theoryârestricted open shell configuration interaction single calculations, we simulate the spectra with remarkable agreement with the experiment. We identify the spectral features as being due to transitions involving localised 1s orbitals. For allene, there are distinct spectral bands that reflect transitions predominantly from either the central or terminal carbon atoms. These results are discussed in the context of ultrafast x-ray studies aimed at detecting the passage through conical intersections in polyatomic molecules
Ab initio van der Waals interactions in simulations of water alter structure from mainly tetrahedral to high-density-like
The structure of liquid water at ambient conditions is studied in ab initio
molecular dynamics simulations using van der Waals (vdW) density-functional
theory, i.e. using the new exchange-correlation functionals optPBE-vdW and
vdW-DF2. Inclusion of the more isotropic vdW interactions counteracts highly
directional hydrogen-bonds, which are enhanced by standard functionals. This
brings about a softening of the microscopic structure of water, as seen from
the broadening of angular distribution functions and, in particular, from the
much lower and broader first peak in the oxygen-oxygen pair-correlation
function (PCF), indicating loss of structure in the outer solvation shells. In
combination with softer non-local correlation terms, as in the new
parameterization of vdW-DF, inclusion of vdW interactions is shown to shift the
balance of resulting structures from open tetrahedral to more close-packed. The
resulting O-O PCF shows some resemblance with experiment for high-density water
(A. K. Soper and M. A. Ricci, Phys. Rev. Lett., 84:2881, 2000), but not
directly with experiment for ambient water. However, an O-O PCF consisting of a
linear combination of 70% from vdW-DF2 and 30% from experiment on low-density
liquid water reproduces near-quantitatively the experimental O-O PCF for
ambient water, indicating consistency with a two-liquid model with fluctuations
between high- and low-density regions
Probing the Hofmeister Effect with Ultrafast Core Hole Spectroscopy
In the current work, X-ray emission spectra of aqueous solutions of different inorganic salts within the Hofmeister series are presented. The results reflect the direct interaction of the ions with the water molecules and therefore, reveal general properties of the salt-water interactions. Within the experimental precision a significant effect of the ions on the water structure has been observed but no ordering according to the structure maker/structure breaker concept could be mirrored in the results indicating that the Hofmeister effect-if existent-may be caused by more complex interactions
- âŠ