105 research outputs found

    Seismic ductility of base isolated structures

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 1994.Includes bibliographical references (p. 55-56).by Antonio Occhiuzzi.M.S

    Experimental Assessment of a Skyhook Semiactive Strategy for Seismic Vibration Control of a Steel Structure

    Get PDF
    Sky-hook damping is one of the most promising techniques for feedback control of structural vibrations. It is based on the idea of connecting the structure to an ideal fixed point of the space through passive dissipative devices. Herein the benefit of semiactive (SA) sky-hook (SH) damping is investigated for seismic protection of a two-storey steel frame via shaking table tests. This kind of SA control is achieved implementing a continuous monitoring of selected structural response parameters and using variable dampers. The damping properties of the latter are changed in real-time so as to make the force provided by the damper match the desired SH damping force as closely as possible. To this aim, two prototype magnetorheological dampers have been installed at the first level of the frame and remotely driven by a SH controller. The effectiveness of the control strategy is measured as response to reduction in terms of floor accelerations and interstory drift in respect to the uncontrolled configuration. Two different calibrations of the SH controller have been tested. The experimental results are deeply discussed in order to identify the optimal one and understand the motivations of its better performance

    Damage analysis and seismic retrofitting of a continuous prestressed reinforced concrete bridge

    Get PDF
    SummaryThe seismic analysis and retrofit of prestressed reinforced concrete bridge is discussed by considering a real case of a viaduct still in use. The unique features of this bridge make this type of bridge particularly interesting, either structurally or architecturally. The paper begins with the analysis of certain particular structural deficiencies that emerged during the viaduct operation. The results of the analysis indicate that the structural performance can be enhanced by only modifying the support devices. The primary structural components are not required to be involved in the retrofitting process. Using the modern seismic code, the upgrading of the viaduct performance is obtained by replacing the old bearing devices on the piers and existing viscous dampers connected abutments to the deck with new modernised ones

    Experimental characterization of tensile strength of steel and fibre rovings also under environmental conditioning

    Get PDF
    Abstract The efficiency of the strengthening techniques by externally applied materials can be improved enhancing the debonding strength of the reinforcement from the support by the use of connectors (anchor spikes) consisting of unidirectional bundles of fibres embedded in concrete or masonry by means of organic or inorganic matrices. The use of connectors is suggested in various codes and guidelines of strengthening techniques by composite materials and provisions for their application are given, but currently there are no details for the qualification of the material. In order to investigate anchor spikes made of glass, basalt, aramid, carbon, PBO and steel, a large experimental campaign was carried out at the Materials and Structures Laboratory of the University of Sannio. The tests allowed to evaluate the mechanical characteristics (tensile strength, modulus of elasticity, deformation at the maximum load) of the anchor spikes constituted by only dry fibres, not impregnated, also as a result of environmental conditioning such as freezing and thawing, controlled humidity, alkaline and saline environment

    Exploring New Boundaries to Mitigate Structural Vibrations of Bridges in Seismic Regions: A Smart Passive Strategy

    Get PDF
    The combined use of two emerging technologies in the field of seismic engineering is investigated. The first is a semiactive control, to reduce smartly the effects induced by earthquakes on structures. The second is the Seismic Early Warning System which allows an estimate of the Peak Ground Accelerations of an incoming earthquake. This paper proposes the exploitation of this information in the framework of a semiactive control strategy based on the use of magnetorheological (MR) dampers. The main idea consists of changing the MR dampers' behaviour by the PGA estimated by the SEWS, to obtain the optimal seismic response of the structure. The control algorithm needed to drive the variable devices, according to the PGA estimate, is the core issue of the proposed strategy. It has been found that different characteristics of earthquakes that occur at different sites play a significant role in the definition of a control algorithm. Therefore, a design procedure for "regional" control algorithms has been performed. It is based on the results of several nonlinear dynamic simulations performed using natural earthquakes and on the use of a multicriteria decision-making procedure. The effectiveness of the proposed control strategy has been verified with reference to a highway bridge and to two specific worldwide seismic regions

    Exploring New Boundaries to Mitigate Structural Vibrations of Bridges in Seismic Regions: A Smart Passive Strategy

    Get PDF
    The combined use of two emerging technologies in the field of seismic engineering is investigated. The first is a semiactive control, to reduce smartly the effects induced by earthquakes on structures. The second is the Seismic Early Warning System which allows an estimate of the Peak Ground Accelerations of an incoming earthquake. This paper proposes the exploitation of this information in the framework of a semiactive control strategy based on the use of magnetorheological (MR) dampers. The main idea consists of changing the MR dampers' behaviour by the PGA estimated by the SEWS, to obtain the optimal seismic response of the structure. The control algorithm needed to drive the variable devices, according to the PGA estimate, is the core issue of the proposed strategy. It has been found that different characteristics of earthquakes that occur at different sites play a significant role in the definition of a control algorithm. Therefore, a design procedure for "regional" control algorithms has been performed. It is based on the results of several nonlinear dynamic simulations performed using natural earthquakes and on the use of a multicriteria decision-making procedure. The effectiveness of the proposed control strategy has been verified with reference to a highway bridge and to two specific worldwide seismic regions

    Experimental Issues in Testing a Semiactive Technique to Control Earthquake Induced Vibration

    Get PDF
    This work focuses on the issues to deal with when approaching experimental testing of structures equipped with semiactive control (SA) systems. It starts from practical experience authors gained in a recent wide campaign on a large scale steel frame structure provided with a control system based on magnetorheological dampers. The latter are special devices able to achieve a wide range of physical behaviours using low-power electrical currents. Experimental activities involving the use of controllable devices require special attention in solving specific aspects that characterize each of the three phases of the SA control loop: acquisition, processing, and command. Most of them are uncommon to any other type of structural testing. This paper emphasizes the importance of the experimental assessment of SA systems and shows how many problematic issues likely to happen in real applications are also present when testing these systems experimentally. This paper highlights several problematic aspects and illustrates how they can be addressed in order to achieve a more realistic evaluation of the effectiveness of SA control solutions. Undesired and unavoidable effects like delays and control malfunction are also remarked. A discussion on the way to reduce their incidence is also offered

    NiSe and CoSe topological nodal-line semimetals: A sustainable platform for efficient thermoplasmonics and solar-driven photothermal membrane distillation

    Full text link
    The control of heat at the nanoscale via the excitation of localized surface plasmons in nanoparticles (NPs) irradiated with light holds great potential in several fields (cancer therapy, catalysis, desalination). To date, most thermoplasmonic applications are based on Ag and Au NPs, whose cost of raw materials inevitably limits the scalability for industrial applications requiring large amounts of photothermal NPs, as in the case of desalination plants. On the other hand, alternative nanomaterials proposed so far exhibit severe restrictions associated with the insufficient photothermal efficacy in the visible, the poor chemical stability, and the challenging scalability. Here, it is demonstrated the outstanding potential of NiSe and CoSe topological nodal-line semimetals for thermoplasmonics. The anisotropic dielectric properties of NiSe and CoSe activate additional plasmonic resonances. Specifically, NiSe and CoSe NPs support multiple localized surface plasmons in the optical range, resulting in a broadband matching with sunlight radiation spectrum. Finally, it is validated the proposed NiSe and CoSe-based thermoplasmonic platform by implementing solar-driven membrane distillation by adopting NiSe and CoSe nanofillers embedded in a polymeric membrane for seawater desalination. Remarkably, replacing Ag with NiSe and CoSe for solar membrane distillation increases the transmembrane flux by 330% and 690%, respectively. Correspondingly, costs of raw materials are also reduced by 24 and 11 times, respectively. The results pave the way for the advent of NiSe and CoSe for efficient and sustainable thermoplasmonics and related applications exploiting sunlight within the paradigm of the circular blue econom
    corecore