29 research outputs found
Quantum oscillations of nitrogen atoms in uranium nitride
The vibrational excitations of crystalline solids corresponding to acoustic
or optic one phonon modes appear as sharp features in measurements such as
neutron spectroscopy. In contrast, many-phonon excitations generally produce a
complicated, weak, and featureless response. Here we present time-of-flight
neutron scattering measurements for the binary solid uranium nitride (UN),
showing well-defined, equally-spaced, high energy vibrational modes in addition
to the usual phonons. The spectrum is that of a single atom, isotropic quantum
harmonic oscillator and characterizes independent motions of light nitrogen
atoms, each found in an octahedral cage of heavy uranium atoms. This is an
unexpected and beautiful experimental realization of one of the fundamental,
exactly-solvable problems in quantum mechanics. There are also practical
implications, as the oscillator modes must be accounted for in the design of
generation IV nuclear reactors that plan to use UN as a fuel.Comment: 25 pages, 10 figures, submitted to Nature Communications,
supplementary information adde
High frequency of pathogenic non-founder germline mutations in BRCA1 and BRCA2 in families with breast and ovarian cancer in a founder population
Funding Information: This work was supported by State Research Program “Biomedicine for the public health (BIOMEDICINE)” project 5 “Personalised cancer diagnostics and treatment effectiveness evaluation”. Publisher Copyright: © 2018 The Author(s).Background: Pathogenic BRCA1 founder mutations (c.4035delA, c.5266dupC) contribute to 3.77% of all consecutive primary breast cancers and 9.9% of all consecutive primary ovarian cancers. Identifying germline pathogenic gene variants in patients with primary breast and ovarian cancer could significantly impact the medical management of patients. The aim of the study was to evaluate the rate of pathogenic mutations in the 26 breast and ovarian cancer susceptibility genes in patients who meet the criteria for BRCA1/2 testing and to compare the accuracy of different selection criteria for second-line testing in a founder population. Methods: Fifteen female probands and 1 male proband that met National Comprehensive Cancer Network (NCCN) criteria for BRCA1/2 testing were included in the study and underwent 26-gene panel testing. Fourteen probands had breast cancer, one proband had ovarian cancer, and one proband had both breast and ovarian cancer. In a 26-gene panel, the following breast and/or ovarian cancer susceptibility genes were included: ATM, BARD1, BLM, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, EPCAM, FAM175A, MEN1, MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, PTEN, RAD50, RAD51C, RAD51D, STK11, TP53, and XRCC2. All patients previously tested negative for BRCA1 founder mutations. Results: In 44% (7 out of 16) of tested probands, pathogenic mutations were identified. Six probands carried pathogenic mutations in BRCA1, and one proband carried pathogenic mutations in BRCA2. In patients, a variant of uncertain significance was found in BRCA2, RAD50, MRE11A and CDH1. The Manchester scoring system showed a high accuracy (87.5%), high sensitivity (85.7%) and high specificity (88.9%) for the prediction of pathogenic non-founder BRCA1/2 mutations. Conclusion: A relatively high incidence of pathogenic non-founder BRCA1/2 mutations was observed in a founder population. The Manchester scoring system predicted the probability of non-founder pathogenic mutations with high accuracy.publishersversionPeer reviewe
HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures.
Approximately 1-5% of breast cancers are attributed to inherited mutations in BRCA1 or BRCA2 and are selectively sensitive to poly(ADP-ribose) polymerase (PARP) inhibitors. In other cancer types, germline and/or somatic mutations in BRCA1 and/or BRCA2 (BRCA1/BRCA2) also confer selective sensitivity to PARP inhibitors. Thus, assays to detect BRCA1/BRCA2-deficient tumors have been sought. Recently, somatic substitution, insertion/deletion and rearrangement patterns, or 'mutational signatures', were associated with BRCA1/BRCA2 dysfunction. Herein we used a lasso logistic regression model to identify six distinguishing mutational signatures predictive of BRCA1/BRCA2 deficiency. A weighted model called HRDetect was developed to accurately detect BRCA1/BRCA2-deficient samples. HRDetect identifies BRCA1/BRCA2-deficient tumors with 98.7% sensitivity (area under the curve (AUC) = 0.98). Application of this model in a cohort of 560 individuals with breast cancer, of whom 22 were known to carry a germline BRCA1 or BRCA2 mutation, allowed us to identify an additional 22 tumors with somatic loss of BRCA1 or BRCA2 and 47 tumors with functional BRCA1/BRCA2 deficiency where no mutation was detected. We validated HRDetect on independent cohorts of breast, ovarian and pancreatic cancers and demonstrated its efficacy in alternative sequencing strategies. Integrating all of the classes of mutational signatures thus reveals a larger proportion of individuals with breast cancer harboring BRCA1/BRCA2 deficiency (up to 22%) than hitherto appreciated (∼1-5%) who could have selective therapeutic sensitivity to PARP inhibition
Bromodomain protein 4 discriminates tissue-specific super-enhancers containing disease-specific susceptibility loci in prostate and breast cancer
Epigenetic information can be used to identify clinically relevant genomic variants single nucleotide polymorphisms (SNPs) of functional importance in cancer development. Super-enhancers are cell-specific DNA elements, acting to determine tissue or cell identity and driving tumor progression. Although previous approaches have been tried to explain risk associated with SNPs in regulatory DNA elements, so far epigenetic readers such as bromodomain containing protein 4 (BRD4) and super-enhancers have not been used to annotate SNPs. In prostate cancer (PC), androgen receptor (AR) binding sites to chromatin have been used to inform functional annotations of SNPs.
Here we establish criteria for enhancer mapping which are applicable to other diseases and traits to achieve the optimal tissue-specific enrichment of PC risk SNPs. We used stratified Q-Q plots and Fisher test to assess the differential enrichment of SNPs mapping to specific categories of enhancers. We find that BRD4 is the key discriminant of tissue-specific enhancers, showing that it is more powerful than AR binding information to capture PC specific risk loci, and can be used with similar effect in breast cancer (BC) and applied to other diseases such as schizophrenia.
This is the first study to evaluate the enrichment of epigenetic readers in genome-wide associations studies for SNPs within enhancers, and provides a powerful tool for enriching and prioritizing PC and BC genetic risk loci. Our study represents a proof of principle applicable to other diseases and traits that can be used to redefine molecular mechanisms of human phenotypic variation.A.U. is supported by the South-East Norway Health Authorities (Helse Sor-Ost grant ID 2014040) at the Oslo University Hospital, and the Norwegian Centre for Molecular Medicine. I.G.M. is supported by funding from the Research Council of Norway (RCN), South East Norway Health Authority (SENHA) and the University of Oslo through the Centre for Molecular Medicine (Norway), which is part of the Nordic EMBL (European Molecular Biology Laboratory) partnership and also supported by Oslo University Hospitals. I.G.M. is also supported by the Norwegian Cancer Society and by EU FP7 funding. I.G.M. holds a visiting scientist position with Cancer Research UK through the Cambridge Research Institute and a Senior Visiting Research Fellowship with Cambridge University through the Department of Oncology. A.U. is funded by the SENHA at the Oslo University Hospital. V. Z. is supported by the Centre for Molecular Medicine (Norway) and together with A.W., F.B and O.A.A. supported by the Norwegian Centre of Research in Mental Disorders (NORMENT) with funding from the RCN, SENHA, Norwegian Health Association and KG Jebsen Foundation. This work was supported by the Kristian Gerhard Jebsen Foundation, Centre for Molecular Medicine Norway, Research Council of Norway (213837, 223273), South-East Norway Health Authorities (2013–123), National Institutes of Health (R01AG031224, R01EB000790 and RC2DA29475). I.G.M. and group members participate in the NIH Genetic Associations and Mechanisms in Oncology (GAME-ON): A Network of Consortia for Post-Genome Wide Association (Post-GWA) Research (prostate: 1U19CA148537-01). This work was also supported by Cancer Research UK Grant C5047/A3354. We would also like to thank the following for funding support: the Institute of Cancer Research and the Everyman Campaign, the Prostate Cancer Research Foundation, Prostate Research Campaign UK (now known as Prostate Cancer UK), the National Cancer Research Network UK and the National Cancer Research Institute (NCRI) UK. The ProtecT study is ongoing and is funded by the Health Technology Assessment Programme (projects 96/20/06, 96/20/99). The ProtecT trial and its linked ProMPT and CAP (Comparison Arm for ProtecT) studies are supported by Department of Health, UK, Cancer Research UK grant number C522/A8649, Medical Research Council (UK) grant number G0500966, ID 75466 and the NCRI, UK. The epidemiological data for ProtecT were generated through funding from the Southwest National Health Service Research and Development
Evaluation of appendicitis risk prediction models in adults with suspected appendicitis
Background
Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis.
Methods
A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis).
Results
Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent).
Conclusion
Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified