189 research outputs found

    Guidelines (1988) for training in clinical laboratory management

    Get PDF
    Trainees in laboratory medicine must develop skills in laboratory management. Guidelines are detailed for laboratory staff in training, directors responsible for staff development and professional bodies wishing to generate material appropriate to their needs. The syllabus delineates the knowledge base required and includes laboratory planning and organization, control of operations, methodology and instrumentation, data management and statistics, financial management, clinical use of tests, communication, personnel management and training and research and development. Methods for achievement of the skills required are suggested. A bibliography of IFCC publications and other material is provided to assist in training in laboratory management

    A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments

    Get PDF
    The volatile compound dimethylsulphide (DMS) is important in climate regulation, the sulphur cycle and signalling to higher organisms. Microbial catabolism of the marine osmolyte dimethylsulphoniopropionate (DMSP) is thought to be the major biological process generating DMS. Here we report the discovery and characterisation of the first gene for DMSP-independent DMS production in any bacterium. This gene, mddA, encodes a methyltransferase that methylates methanethiol (MeSH) and generates DMS. MddA functions in many taxonomically diverse bacteria including sediment-dwelling pseudomonads, nitrogen-fixing bradyrhizobia and cyanobacteria, and mycobacteria, including the pathogen Mycobacterium tuberculosis. The mddA gene is present in metagenomes from varied environments, being particularly abundant in soil environments, where it is predicted to occur in up to 76% of bacteria. This novel pathway may significantly contribute to global DMS emissions, especially in terrestrial environments, and could represent a shift from the notion that DMSP is the only significant precursor of DMS

    Methanethiol-dependent dimethylsulfide production in soil environments

    Get PDF
    Dimethylsulfide (DMS) is an environmentally important trace gas with roles in sulfur cycling, signalling to higher organisms and in atmospheric chemistry. DMS is believed to be predominantly produced in marine environments via microbial degradation of the osmolyte dimethylsulfoniopropionate (DMSP). However, significant amounts of DMS are also generated from terrestrial environments, for example, peat bogs can emit ~6 μmol DMS m−2 per day, likely via the methylation of methanethiol (MeSH). A methyltransferase enzyme termed ‘MddA’, which catalyses the methylation of MeSH, generating DMS, in a wide range of bacteria and some cyanobacteria, may mediate this process, as the mddA gene is abundant in terrestrial metagenomes. This is the first study investigating the functionality of MeSH-dependent DMS production (Mdd) in a wide range of aerobic environments. All soils and marine sediment samples tested produced DMS when incubated with MeSH. Cultivation-dependent and cultivation-independent methods were used to assess microbial community changes in response to MeSH addition in a grassland soil where 35.9% of the bacteria were predicted to contain mddA. Bacteria of the genus Methylotenera were enriched in the presence of MeSH. Furthermore, many novel Mdd+ bacterial strains were isolated. Despite the abundance of mddA in the grassland soil, the Mdd pathway may not be a significant source of DMS in this environment as MeSH addition was required to detect DMS at only very low conversion rates

    Scans for signatures of selection in Russian cattle breed genomes reveal new candidate genes for environmental adaptation and acclimation

    Get PDF
    Domestication and selective breeding has resulted in over 1000 extant cattle breeds. Many of these breeds do not excel in important traits but are adapted to local environments. These adaptations are a valuable source of genetic material for efforts to improve commercial breeds. As a step toward this goal we identified candidate regions to be under selection in genomes of nine Russian native cattle breeds adapted to survive in harsh climates. After comparing our data to other breeds of European and Asian origins we found known and novel candidate genes that could potentially be related to domestication, economically important traits and environmental adaptations in cattle. The Russian cattle breed genomes contained regions under putative selection with genes that may be related to adaptations to harsh environments (e.g., AQP5, RAD50, and RETREG1). We found genomic signatures of selective sweeps near key genes related to economically important traits, such as the milk production (e.g., DGAT1, ABCG2), growth (e.g., XKR4), and reproduction (e.g., CSF2). Our data point to candidate genes which should be included in future studies attempting to identify genes to improve the extant breeds and facilitate generation of commercial breeds that fit better into the environments of Russia and other countries with similar climates

    The Use of Flow-Injection Analysis with Chemiluminescence Detection of Aqueous Ferrous Iron in Waters Containing High Concentrations of Organic Compounds

    Get PDF
    An evaluation of flow-injection analysis with chemiluminescence detection (FIA-CL) to quantify Fe2+(aq) in freshwaters was performed. Iron-coordinating and/or iron-reducing compounds, dissolved organic matter (DOM), and samples from two natural water systems were used to amend standard solutions of Fe2+(aq). Slopes of the response curves from ferrous iron standards (1 – 100 nM) were compared to the response curves of iron standards containing the amendments. Results suggest that FIA-CL is not suitable for systems containing ascorbate, hydroxylamine, cysteine or DOM. Little or no change in sensitivity occurred in solutions of oxalate and glycine or in natural waters with little organic matter

    Differences in lateral gene transfer in hypersaline versus thermal environments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of lateral gene transfer (LGT) in the evolution of microorganisms is only beginning to be understood. While most LGT events occur between closely related individuals, inter-phylum and inter-domain LGT events are not uncommon. These distant transfer events offer potentially greater fitness advantages and it is for this reason that these "long distance" LGT events may have significantly impacted the evolution of microbes. One mechanism driving distant LGT events is microbial transformation. Theoretically, transformative events can occur between any two species provided that the DNA of one enters the habitat of the other. Two categories of microorganisms that are well-known for LGT are the thermophiles and halophiles.</p> <p>Results</p> <p>We identified potential inter-class LGT events into both a thermophilic class of Archaea (Thermoprotei) and a halophilic class of Archaea (Halobacteria). We then categorized these LGT genes as originating in thermophiles and halophiles respectively. While more than 68% of transfer events into Thermoprotei taxa originated in other thermophiles, less than 11% of transfer events into Halobacteria taxa originated in other halophiles.</p> <p>Conclusions</p> <p>Our results suggest that there is a fundamental difference between LGT in thermophiles and halophiles. We theorize that the difference lies in the different natures of the environments. While DNA degrades rapidly in thermal environments due to temperature-driven denaturization, hypersaline environments are adept at preserving DNA. Furthermore, most hypersaline environments, as topographical minima, are natural collectors of cellular debris. Thus halophiles would in theory be exposed to a greater diversity and quantity of extracellular DNA than thermophiles.</p

    Postal survey of physicians and laboratories: Practices and perceptions of molecular oncology testing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular oncology testing (MOT) to detect genomic alterations underlying cancer holds promise for improved cancer care. Yet knowledge limitations regarding the delivery of testing services may constrain the translation of scientific advancements into effective health care.</p> <p>Methods</p> <p>We conducted a cross-sectional, self-administered, postal survey of active cancer physicians in Ontario, Canada (N = 611) likely to order MOT, and cancer laboratories (N = 99) likely to refer (i.e., referring laboratories) or conduct (i.e., testing laboratories) MOT in 2006, to assess respondents' perceptions of the importance and accessibility of MOT and their preparedness to provide it.</p> <p>Results</p> <p>54% of physicians, 63% of testing laboratories and 60% of referring laboratories responded. Most perceived MOT to be important for treatment, diagnosis or prognosis now, and in 5 years (61% – 100%). Yet only 45% of physicians, 59% of testing labs and 53% of referring labs agreed that patients in their region were receiving MOT that is indicated as a standard of care. Physicians and laboratories perceived various barriers to providing MOT, including, among 70% of physicians, a lack of clear guidelines regarding clinical indications, and among laboratories, a lack of funding (73% – 100%). Testing laboratories were confident of their ability to determine whether and which MOT was indicated (77% and 82% respectively), and perceived that key elements of formal and continuing education were helpful (75% – 100%). By contrast, minorities of physicians were confident of their ability to assess whether and which MOT was indicated (46% and 34% respectively), and while majorities considered various continuing educational resources helpful (68% – 75%), only minorities considered key elements of formal education helpful in preparing for MOT (17% – 43%).</p> <p>Conclusion</p> <p>Physicians and laboratory professionals were enthusiastic about the value of MOT for cancer care but most did not believe patients were gaining adequate access to clinically necessary testing. Further, our results suggest that many were ill equipped as individual stakeholders, or as a coordinated system of referral and interpretation, to provide MOT. These challenges should inspire educational, training and other interventions to ensure that developments in molecular oncology can result in optimal cancer care.</p
    corecore