17 research outputs found

    Air Composition over the Russian Arctic: 1—Methane

    No full text
    In the Arctic, global warming is 2–3 times faster than over other regions of the globe. As a result, noticeable changes are already being recorded in all areas of the environment. However, there is very little data on such changes in the Russian Arctic. Therefore, to fill the gap in the data on the vertical distribution of the gas and aerosol composition of air in this region, an experiment was carried out on the Tu-134 Optik flying laboratory in September 2020 to sound the atmosphere and water surface over the water areas of all seas in the Russian Arctic. This paper analyzes the spatial distribution of methane. It is shown that during the experiment its concentration was the highest over the Kara Sea (2090 ppb) and the lowest over the Chukchi Sea (2005 ppb). The East Siberian and Bering Seas were slightly different from the Chukchi Sea in terms of the methane concentration. Average values of CH4 are characteristic of the Barents (2030 ppb) and the Laptev Seas (2040 ppb). The difference between the concentrations at an altitude of 200 meters and in the free troposphere attained 150 ppb over the Kara Sea, decreased to 91 and 94 ppb over the Barents and Laptev Seas, and further decreased over the East Siberian, Chukchi, and Bering Seas to 66, 63, and 74 ppb, respectively. Horizontal heterogeneity in the distribution of methane over the Arctic seas is the greatest over the Laptev Sea, where it attained 73 ppb. It is two times higher than over the Barents and Kara Seas, and 5–7 times higher than over the East Siberian and Bering Seas

    Air Composition over the Russian Arctic: 2–Carbon Dioxide

    No full text
    International audienceWe analyze the spatial distribution of carbon dioxide over the seas of the Russian Arctic based on the results of the comprehensive experiment conducted in September 2020. It turned out that during the experiment, the concentration of CO2 increased from west to east. The minimum of 396 ppm was over the Barents Sea, and the maximum of 4106 ppm was over the Chukchi Sea. The difference between the concentrations at an altitude of 200 m and in the free troposphere attained 156 ppm over the Barents Sea and decreased to 56 ppm over the Laptev Sea. Over the eastern seas, the difference became generally positive, which was associated with the air transfer from Alaska. Above the waters of most seas, the distribution of carbon dioxide was horizontally heterogeneous, which showed the regional features of its assimilation by the ocean and transfer from the continent
    corecore