361 research outputs found

    Multilingualism and strategic planning for HIV/AIDS-related health care and communication [version 1; peer review: 2 approved]

    Get PDF
    Background: Many lower and middle income countries (LMICs) have high levels of linguistic diversity, meaning that health information and care is not available in the languages spoken by the majority of the population. This research investigates the extent to which language needs are taken into account in planning for HIV/AIDS-related health communication in development contexts. / Methods: We analysed all HIV/AIDS-related policy documents and reports available via the websites of the Department for International Development UK, The Global Fund, and the Ministries of Health and National AIDS commissions of Burkina Faso, Ghana and Senegal. We used quantitative and qualitative analysis to assess the level of prominence given to language issues, ascertain the level at which mentions occur (donor/funder/national government or commission), and identify the concrete plans for interlingual communication cited in the documents. / Results: Of the 314 documents analysed, 35 mention language or translation, but the majority of the mentions are made in passing or in the context of providing background socio-cultural information, the implications of which are not explored. At donor level (DFID), no mentions of language issues were found. Only eight of the documents (2.5%) outline concrete actions for addressing multilingualism in HIV/AIDS-related health communication. These are limited to staff training for sign language, and the production of multilingual resources for large-scale sensitization campaigns. / Conclusions: The visibility of language needs in formal planning and reporting in the context of HIV/AIDS-related health care is extremely low. Whilst this low visibility should not be equated to a complete absence of translation or interpreting activity on the ground, it is likely to result in insufficient resources being dedicated to addressing language barriers. Further research is needed to fully understand the ramifications of the low prominence given to questions of language, not least in relation to its impact on gender equality

    Autonomous underwater videography and tracking of basking sharks

    Get PDF
    This is the final version. Available on open access from BMC via the DOI in this recordBackground Biologging studies have revealed a wealth of information about the spatio-temporal movements of a wide range of vertebrates large enough to carry electronic tracking tags. Advances in autonomous underwater vehicles (AUVs or UAVs) and unmanned aerial vehicles (commonly known as drones), which can carry far larger payloads of sensor technologies, have revealed insights into the environment through which animals travel. Some AUVs have been used to film target animals, but are generally limited to periods as long as a drone operator can actively follow an animal. In the present study, we use an AUV, the REMUS-100 SharkCam, paired with a custom transponder tag attached to the shark, to autonomously follow three basking sharks for a cumulative total of 10.9 h to collect video and environmental data on their sub-surface behaviour. The basking shark is the second largest fish in the world and is endangered globally, but despite being subject to various biologging studies, little is known of this species breeding ecology and their mating grounds remain unknown. Results We detail the first successful autonomous tracking of basking sharks, comprising three missions that filmed basking sharks in mid-water and close to benthic habitats. Sharks spent very little time feeding, and travelled relatively close to sandy, rocky and algae-covered benthos. One basking shark was observed defecating. Conspecifics were not observed in the three missions, nor were courtship or breeding behaviours. AUV offset distances for videography were determined iteratively through tracking. These offsets varied depending on the trade-off of between water clarity and proximity of the AUV for obtaining useful video data and directly influencing shark behaviour. Conclusions The present study is the first successful use of an AUV to gain insight into the sub-surface behaviour of basking sharks.WWF/Sky Ocean RescueScottish Natural Heritage (SNH)WHOIUniversity of ExeterSea World Busch Gardens Conservation FundHydroid Inc

    Dead-reckoning animal movements in R: a reappraisal using Gundog.Tracks

    Get PDF
    BackgroundFine-scale data on animal position are increasingly enabling us to understand the details of animal movement ecology and dead-reckoning, a technique integrating motion sensor-derived information on heading and speed, can be used to reconstruct fine-scale movement paths at sub-second resolution, irrespective of the environment. On its own however, the dead-reckoning process is prone to cumulative errors, so that position estimates quickly become uncoupled from true location. Periodic ground-truthing with aligned location data (e.g., from global positioning technology) can correct for this drift between Verified Positions (VPs). We present step-by-step instructions for implementing Verified Position Correction (VPC) dead-reckoning in R using the tilt-compensated compass method, accompanied by the mathematical protocols underlying the code and improvements and extensions of this technique to reduce the trade-off between VPC rate and dead-reckoning accuracy. These protocols are all built into a user-friendly, fully annotated VPC dead-reckoning R function; Gundog.Tracks, with multi-functionality to reconstruct animal movement paths across terrestrial, aquatic, and aerial systems, provided within the Additional file 4 as well as online (GitHub).ResultsThe Gundog.Tracks function is demonstrated on three contrasting model species (the African lion Panthera leo, the Magellanic penguin Spheniscus magellanicus, and the Imperial cormorant Leucocarbo atriceps) moving on land, in water and in air. We show the effect of uncorrected errors in speed estimations, heading inaccuracies and infrequent VPC rate and demonstrate how these issues can be addressed.ConclusionsThe function provided will allow anyone familiar with R to dead-reckon animal tracks readily and accurately, as the key complex issues are dealt with by Gundog.Tracks. This will help the community to consider and implement a valuable, but often overlooked method of reconstructing high-resolution animal movement paths across diverse species and systems without requiring a bespoke application

    Moving magnetoencephalography towards real-world applications with a wearable system

    Get PDF
    Imaging human brain function with techniques such as magnetoencephalography1 (MEG) typically requires a subject to perform tasks whilst their head remains still within a restrictive scanner. This artificial environment makes the technique inaccessible to many people, and limits the experimental questions that can be addressed. For example, it has been difficult to apply neuroimaging to investigation of the neural substrates of cognitive development in babies and children, or in adult studies that require unconstrained head movement (e.g. spatial navigation). Here, we develop a new type of MEG system that can be worn like a helmet, allowing free and natural movement during scanning. This is possible due to the integration of new quantum sensors2,3 that do not rely on superconducting technology, with a novel system for nulling background magnetic fields. We demonstrate human electrophysiological measurement at millisecond resolution whilst subjects make natural movements, including head nodding, stretching, drinking and playing a ball game. Results compare well to the current state-of-the-art, even when subjects make large head movements. The system opens up new possibilities for scanning any subject or patient group, with myriad applications such as characterisation of the neurodevelopmental connectome, imaging subjects moving naturally in a virtual environment, and understanding the pathophysiology of movement disorders

    The global Alzheimer's Association round robin study on plasma amyloid β methods

    Get PDF
    Introduction: Blood-based assays to measure brain amyloid beta (Aβ) deposition are an attractive alternative to the cerebrospinal fluid (CSF)-based assays currently used in clinical settings. In this study, we examined different blood-based assays to measure Aβ and how they compare among centers and assays. Methods: Aliquots from 81 plasma samples were distributed to 10 participating centers. Seven immunological assays and four mass-spectrometric methods were used to measure plasma Aβ concentrations. Results: Correlations were weak for Aβ42 while Aβ40 correlations were stronger. The ratio Aβ42/Aβ40 did not improve the correlations and showed weak correlations. Discussion: The poor correlations for Aβ42 in plasma might have several potential explanations, such as the high levels of plasma proteins (compared to CSF), sensitivity to pre-analytical sample handling and specificity, and cross-reactivity of different antibodies. Different methods might also measure different pools of plasma Aβ42. We, however, hypothesize that greater correlations might be seen in future studies because many of the methods have been refined during completion of this study

    Identification of animal movement patterns using tri-axial magnetometry

    Get PDF
    BackgroundAccelerometers are powerful sensors in many bio-logging devices, and are increasingly allowing researchers to investigate the performance, behaviour, energy expenditure and even state, of free-living animals. Another sensor commonly used in animal-attached loggers is the magnetometer, which has been primarily used in dead-reckoning or inertial measurement tags, but little outside that. We examine the potential of magnetometers for helping elucidate the behaviour of animals in a manner analogous to, but very different from, accelerometers. The particular responses of magnetometers to movement means that there are instances when they can resolve behaviours that are not easily perceived using accelerometers.MethodsWe calibrated the tri-axial magnetometer to rotations in each axis of movement and constructed 3-dimensional plots to inspect these stylised movements. Using the tri-axial data of Daily Diary tags, attached to individuals of number of animal species as they perform different behaviours, we used these 3-d plots to develop a framework with which tri-axial magnetometry data can be examined and introduce metrics that should help quantify movement and behaviour.ResultsTri-axial magnetometry data reveal patterns in movement at various scales of rotation that are not always evident in acceleration data. Some of these patterns may be obscure until visualised in 3D space as tri-axial spherical plots (m-spheres). A tag-fitted animal that rotates in heading while adopting a constant body attitude produces a ring of data around the pole of the m-sphere that we define as its Normal Operational Plane (NOP). Data that do not lie on this ring are created by postural rotations of the animal as it pitches and/or rolls. Consequently, stereotyped behaviours appear as specific trajectories on the sphere (m-prints), reflecting conserved sequences of postural changes (and/or angular velocities), which result from the precise relationship between body attitude and heading. This novel approach shows promise for helping researchers to identify and quantify behaviours in terms of animal body posture, including heading.ConclusionMagnetometer-based techniques and metrics can enhance our capacity to identify and examine animal behaviour, either as a technique used alone, or one that is complementary to tri-axial accelerometry

    Organisation of nucleosomal arrays reconstituted with repetitive African green monkey α-satellite DNA as analysed by atomic force microscopy

    Get PDF
    Alpha-satellite DNA (AS) is part of centromeric DNA and could be relevant for centromeric chromatin structure: its repetitive character may generate a specifically ordered nucleosomal arrangement and thereby facilitate kinetochore protein binding and chromatin condensation. Although nucleosomal positioning on some satellite sequences had been shown, including AS from African green monkey (AGM), the sequence-dependent nucleosomal organisation of repetitive AS of this species has so far not been analysed. We therefore studied the positioning of reconstituted nucleosomes on AGM AS tandemly repeated DNA. Enzymatic analysis of nucleosome arrays formed on an AS heptamer as well as the localisation of mononucleosomes on an AS dimer by atomic force microscopy (AFM) showed one major positioning frame, in agreement with earlier results. The occupancy of this site was in the range of 45–50%, in quite good agreement with published in vivo observations. AFM measurements of internucleosomal distances formed on the heptamer indicated that the nucleosomal arrangement is governed by sequence-specific DNA-histone interactions yielding defined internucleosomal distances, which, nevertheless, are not compatible with a uniform phasing of the nucleosomes with the AGM AS repeats

    Stable, Precise, and Reproducible Patterning of Bicoid and Hunchback Molecules in the Early Drosophila Embryo

    Get PDF
    Precise patterning of morphogen molecules and their accurate reading out are of key importance in embryonic development. Recent experiments have visualized distributions of proteins in developing embryos and shown that the gradient of concentration of Bicoid morphogen in Drosophila embryos is established rapidly after fertilization and remains stable through syncytial mitoses. This stable Bicoid gradient is read out in a precise way to distribute Hunchback with small fluctuations in each embryo and in a reproducible way, with small embryo-to-embryo fluctuation. The mechanisms of such stable, precise, and reproducible patterning through noisy cellular processes, however, still remain mysterious. To address these issues, here we develop the one- and three-dimensional stochastic models of the early Drosophila embryo. The simulated results show that the fluctuation in expression of the hunchback gene is dominated by the random arrival of Bicoid at the hunchback enhancer. Slow diffusion of Hunchback protein, however, averages out this intense fluctuation, leading to the precise patterning of distribution of Hunchback without loss of sharpness of the boundary of its distribution. The coordinated rates of diffusion and transport of input Bicoid and output Hunchback play decisive roles in suppressing fluctuations arising from the dynamical structure change in embryos and those arising from the random diffusion of molecules, and give rise to the stable, precise, and reproducible patterning of Bicoid and Hunchback distributions

    Movement activity based classification of animal behaviour with an application to data from cheetah (Acinonyx jubatus).

    Get PDF
    We propose a new method, based on machine learning techniques, for the analysis of a combination of continuous data from dataloggers and a sampling of contemporaneous behaviour observations. This data combination provides an opportunity for biologists to study behaviour at a previously unknown level of detail and accuracy; however, continuously recorded data are of little use unless the resulting large volumes of raw data can be reliably translated into actual behaviour. We address this problem by applying a Support Vector Machine and a Hidden-Markov Model that allows us to classify an animal's behaviour using a small set of field observations to calibrate continuously recorded activity data. Such classified data can be applied quantitatively to the behaviour of animals over extended periods and at times during which observation is difficult or impossible. We demonstrate the usefulness of the method by applying it to data from six cheetah (Acinonyx jubatus) in the Okavango Delta, Botswana. Cumulative activity data scores were recorded every five minutes by accelerometers embedded in GPS radio-collars for around one year on average. Direct behaviour sampling of each of the six cheetah were collected in the field for comparatively short periods. Using this approach we are able to classify each five minute activity score into a set of three key behaviour (feeding, mobile and stationary), creating a continuous behavioural sequence for the entire period for which the collars were deployed. Evaluation of our classifier with cross-validation shows the accuracy to be 83%-94%, but that the accuracy for individual classes is reduced with decreasing sample size of direct observations. We demonstrate how these processed data can be used to study behaviour identifying seasonal and gender differences in daily activity and feeding times. Results given here are unlike any that could be obtained using traditional approaches in both accuracy and detail
    • …
    corecore