2,106 research outputs found

    CMBR Weak Lensing and HI 21-cm Cross-correlation Angular Power Spectrum

    Full text link
    Weak gravitational lensing of the CMBR manifests as a secondary anisotropy in the temperature maps. The effect, quantified through the shear and convergence fields imprint the underlying large scale structure (LSS), geometry and evolution history of the Universe. It is hence perceived to be an important observational probe of cosmology. De-lensing the CMBR temperature maps is also crucial for detecting the gravitational wave generated B-modes. Future observations of redshifted 21-cm radiation from the cosmological neutral hydrogen (HI) distribution hold the potential of probing the LSS over a large redshift range. We have investigated the correlation between post-reionization HI signal and weak lensing convergence field. Assuming that the HI follows the dark matter distribution, the cross-correlation angular power spectrum at a multipole \ell is found to be proportional to the cold dark matter power spectrum evaluated at \ell/r, where r denotes the comoving distance to the redshift where the HI is located. The amplitude of the ross-correlation depends on quantities specific to the HI distribution, growth of perturbations and also the underlying cosmological model. In an ideal ituation, we found that a statistically significant detection of the cross-correlation signal is possible. If detected, the cross-correlation signal hold the possibility of a joint estimation of cosmological parameters and also test various CMBR de-lensing estimators.Comment: 14 pages, 4 figures, publishe

    Delayed - Choice Entanglement - Swapping with Vacuum-One Photon Quantum States

    Full text link
    We report the experimental realization of a recently discovered quantum information protocol by Asher Peres implying an apparent non-local quantum mechanical retrodiction effect. The demonstration is carried out by applying a novel quantum optical method by which each singlet entangled state is physically implemented by a two-dimensional subspace of Fock states of a mode of the electromagnetic field, specifically the space spanned by the vacuum and the one photon state, along lines suggested recently by E. Knill et al., Nature 409, 46 (2001) and by M. Duan et al., Nature 414, 413 (2001). The successful implementation of the new technique is expected to play an important role in modern quantum information and communication and in EPR quantum non-locality studies

    Plans for a Superconducting H^{-} LINAC (SPL) at CERN

    Get PDF
    As part of the upgrade of the LHC injector complex at CERN, the construction of a 4 GeV Superconducting Proton Linac (the SPL, in fact an H- accelerator) is planned to begin in 2012. Depending upon physics requests, it should be upgradeable to 5 GeV and multi-MW beam power at a later stage. The construction of Linac4, its low energy front end, has started at the beginning of 2008. A full project proposal with a cost estimate for the low power version of the SPL aimed at improving LHC performance has to be ready for mid-2011. As a first step towards that goal, essential machine parameters like RF frequency, cooling temperature and accelerating gradient have recently been revisited and plans have been drawn for designing and testing critical components

    CsCuCl3 perovskite-like compound under extreme conditions

    Full text link
    Halide perovskite has attracted intense research interest owing to its multifaceted and versatile applications in optoelectronics. This intrigue is further fueled by their propensity to undergo intricate structural modifications under extreme conditions, thereby instigating property changes. Within this context, our study delves deep into the intricate interplay of structural and vibrational attributes within the inorganic-metal halide perovskite-like CsCuCl3. Our approach employs Raman spectroscopy and Synchrotron Powder X-Ray Diffraction (SPXRD) techniques harnessed under the dual conditions of low temperatures and high pressures. We have observed a distinct spin-phonon coupling mechanism by employing Raman spectroscopy at low temperatures; this coupling has been manifested as a renormalization phonon phenomenon that occurs notably at T* = 15 K. The correlation between spin and phonon dynamics becomes pronounced through a notable hardening of phonon temperature dependence, a behavior intricately linked to the material antiferromagnetic transition at TN = 10.7 K. The SPXRD under high pressure showed a first-order structural phase transition (SPT) at the critical pressure Pc = 3.69 GPa, leading to the transformation from the hexagonal P6522 to a base-centered monoclinic cell. Notably, the coexistence of both phases is discernible within the pressure range from 2.79 to 3.57 GPa, indicating that the SPT involves the reorganization of the internal [Cu2Cl9]5- dimer unit, with the Cl-Cu-Cl bending contributing more than stretching modes. Furthermore, we demonstrate that the SPT is reversible, but residual strain pressure influences the modification of the critical pressure Pc value upon pressure decrease.Comment: 27 pages, 8 figure

    Choice of Frequency, Gradient and Temperature for a Superconducting Proton Linac

    Get PDF
    The construction of a Superconducting Proton Linac is planned at CERN during the next decade. It is foreseen to be constructed in two stages: a low duty cycle, low-power linac (LPSPL) as an injector for a new 50 GeV synchrotron (PS2) replacing the present PS, which could be upgraded to a high-duty cycle, high-power linac (HPSPL), for the needs of future facility(ies) requiring a multi-MW beam power. In this paper we present the criteria which were used to choose the frequency, gradient, and cryogenic temperature of the SPL. Since these questions are common to other proposed high-power proton linacs, they may also be of use for other projects with similar specifications. The various design options are discussed as well as their impact on beam dynamics, cavity performance, power consumption, cryogenics,and overall efficiency

    HI Fluctuations at Large Redshifts: I--Visibility correlation

    Full text link
    We investigate the possibility of probing the large scale structure in the universe at large redshifts by studying fluctuations in the redshifted 1420 MHz emission from the neutral hydrogen (HI) at early epochs. The neutral hydrogen content of the universe is known from absorption studies for z<4.5. The HI distribution is expected to be inhomogeneous in the gravitational instability picture and this inhomogeneity leads to anisotropy in the redshifted HI emission. The best hope of detecting this anisotropy is by using a large low-frequency interferometric instrument like the Giant Meter-Wave Radio Telescope (GMRT). We calculate the visibility correlation function <V_nu(u) V_nu'(u)> at two frequencies nu and nu' of the redshifted HI emission for an interferometric observation. In particular we give numerical results for the two GMRT channels centered around nu =325 and 610 MHz from density inhomogeneity and peculiar velocity of the HI distribution. The visibility correlation is ~10^-9 to 10^-10 Jy^2. We calculate the signal-to-noise for detecting the correlation signal in the presence of system noise and show that the GMRT might detect the signal for integration times ~ 100 hrs. We argue that the measurement of visibility correlation allows optimal use of the uncorrelated nature of the system noise across baselines and frequency channels.Comment: 17 pages, 2 figures, Submitted to JA

    CLASH: New Multiple-Images Constraining the Inner Mass Profile of MACS J1206.2-0847

    Get PDF
    We present a strong-lensing analysis of the galaxy cluster MACS J1206.2-0847 (zz=0.44) using UV, Optical, and IR, HST/ACS/WFC3 data taken as part of the CLASH multi-cycle treasury program, with VLT/VIMOS spectroscopy for some of the multiply-lensed arcs. The CLASH observations, combined with our mass-model, allow us to identify 47 new multiply-lensed images of 12 distant sources. These images, along with the previously known arc, span the redshift range 1\la z\la5.5, and thus enable us to derive a detailed mass distribution and to accurately constrain, for the first time, the inner mass-profile of this cluster. We find an inner profile slope of dlogΣ/dlogθ0.55±0.1d\log \Sigma/d\log \theta\simeq -0.55\pm 0.1 (in the range [1\arcsec, 53\arcsec], or 5\la r \la300 kpc), as commonly found for relaxed and well-concentrated clusters. Using the many systems uncovered here we derive credible critical curves and Einstein radii for different source redshifts. For a source at zs2.5z_{s}\simeq2.5, the critical curve encloses a large area with an effective Einstein radius of \theta_{E}=28\pm3\arcsec, and a projected mass of 1.34±0.15×1014M1.34\pm0.15\times10^{14} M_{\odot}. From the current understanding of structure formation in concordance cosmology, these values are relatively high for clusters at z0.5z\sim0.5, so that detailed studies of the inner mass distribution of clusters such as MACS J1206.2-0847 can provide stringent tests of the Λ\LambdaCDM paradigm.Comment: 7 pages, 1 table, 4 figures; submitted to ApJ Letters; V3: minor correction

    Separatrix splitting at a Hamiltonian 02iω0^2 i\omega bifurcation

    Full text link
    We discuss the splitting of a separatrix in a generic unfolding of a degenerate equilibrium in a Hamiltonian system with two degrees of freedom. We assume that the unperturbed fixed point has two purely imaginary eigenvalues and a double zero one. It is well known that an one-parametric unfolding of the corresponding Hamiltonian can be described by an integrable normal form. The normal form has a normally elliptic invariant manifold of dimension two. On this manifold, the truncated normal form has a separatrix loop. This loop shrinks to a point when the unfolding parameter vanishes. Unlike the normal form, in the original system the stable and unstable trajectories of the equilibrium do not coincide in general. The splitting of this loop is exponentially small compared to the small parameter. This phenomenon implies non-existence of single-round homoclinic orbits and divergence of series in the normal form theory. We derive an asymptotic expression for the separatrix splitting. We also discuss relations with behaviour of analytic continuation of the system in a complex neighbourhood of the equilibrium

    Assessment of the basic parameters of the CERN Superconducting Proton Linac

    Get PDF
    The construction of a 4GeV Superconducting Proton Linac (the SPL) is now part of the Long Term Plan of CERN, and the construction of Linac4, its low-energy front end, has begun. For mid-2011 the existing conceptual design of the SPL has to be refined and transformed into a project proposal. As a first step, basic parameters like RF frequency, accelerating gradient and operating temperature of the superconducting cavities have been re-assessed, taking into account the experience accumulated in the world during the recent years, especially for the SNS and the ILC projects. The conclusions confirm the validity of the initial choices, namely the RF frequency of 704.4MHz and the cooling temperature of ~ 2K. However the assumed gradients are estimated as optimistic: additional tests are necessary during the coming years to properly define the values to be used in the SPL design. This analysis is documented and its results are explained in this report
    corecore