7,102 research outputs found

    Recombination and Population Mosaic of a Multifunctional Viral Gene, Adeno-Associated Virus cap

    Get PDF
    Homologous recombination is a dominant force in evolution and results in genetic mosaics. To detect evidence of recombination events and assess the biological significance of genetic mosaics, genome sequences for various viral populations of reasonably large size are now available in the GenBank. We studied a multi-functional viral gene, the adeno-associated virus (AAV) cap gene, which codes for three capsid proteins, VP1, VP2 and VP3. VP1-3 share a common C-terminal domain corresponding to VP3, which forms the viral core structure, while the VP1 unique N-terminal part contains an enzymatic domain with phospholipase A2 activity. Our recombinant detection program (RecI) revealed five novel recombination events, four of which have their cross-over points in the N-terminal, VP1 and VP2 unique region. Comparison of phylogenetic trees for different cap gene regions confirmed discordant phylogenies for the recombinant sequences. Furthermore, differences in the phylogenetic tree structures for the VP1 unique (VP1u) region and the rest of cap highlighted the mosaic nature of cap gene in the AAV population: two dominant forms of VP1u sequences were identified and these forms are linked to diverse sequences in the rest of cap gene. This observation together with the finding of frequent recombination in the VP1 and 2 unique regions suggests that this region is a recombination hot spot. Recombination events in this region preserve protein blocks of distinctive functions and contribute to convergence in VP1u and divergence of the rest of cap. Additionally the possible biological significance of two dominant VP1u forms is inferred

    Magnetic-field enhanced aniferromagnetism in non-centrosymmetric heavy-fermion superconductor CePt3_3Si

    Full text link
    The effect of magnetic field on the static and dynamic spin correlations in the non-centrosymmetric heavy-fermion superconductor CePt3_3Si was investigated by neutron scattering. The application of a magnetic field B increases the antiferromagnetic (AFM) peak intensity. This increase depends strongly on the field direction: for B{\parallel}[0 0 1] the intensity increases by a factor of 4.6 at a field of 6.6 T, which corresponds to more than a doubling of the AFM moment, while the moment increases by only 10 % for B{\parallel}[1 0 0] at 5 T. This is in strong contrast to the inelastic response near the antiferromagnetic ordering vector, where no marked field variations are observed for B{\parallel}[0 0 1] up to 3.8 T. The results reveal that the AFM state in CePt3_3Si, which coexists with superconductivity, is distinctly different from other unconventional superconductors.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev.

    Search for long-lived massive particles in extensive air showers

    Get PDF
    Air showers containing delayed sub-showers which may be produced by a long-lived massive particle have been investigated by using twelve detectors. Ten events have been selected out as the candidates. However, a definite conclusion cannot be reached at the present time

    Far-Ultraviolet and Far-Infrared Bivariate Luminosity Function of Galaxies: Complex Relation between Stellar and Dust Emission

    Get PDF
    Far-ultraviolet (FUV) and far-infrared (FIR) luminosity functions (LFs) of galaxies show a strong evolution from z=0z = 0 to z=1z = 1, but the FIR LF evolves much stronger than the FUV one. The FUV is dominantly radiated from newly formed short-lived OB stars, while the FIR is emitted by dust grains heated by the FUV radiation field. It is known that dust is always associated with star formation activity. Thus, both FUV and FIR are tightly related to the star formation in galaxies, but in a very complicated manner. In order to disentangle the relation between FUV and FIR emissions, we estimate the UV-IR bivariate LF (BLF) of galaxies with {\sl GALEX} and {\sl AKARI} All-Sky Survey datasets. Recently we invented a new mathematical method to construct the BLF with given marginals and prescribed correlation coefficient. This method makes use of a tool from mathematical statistics, so called "copula". The copula enables us to construct a bivariate distribution function from given marginal distributions with prescribed correlation and/or dependence structure. With this new formulation and FUV and FIR univariate LFs, we analyze various FUV and FIR data with {\sl GALEX}, {\sl Spitzer}, and {\sl AKARI} to estimate the UV-IR BLF. The obtained BLFs naturally explain the nonlinear complicated relation between FUV and FIR emission from star-forming galaxies. Though the faint-end of the BLF was not well constrained for high-zz samples, the estimated linear correlation coefficient ρ\rho was found to be very high, and is remarkably stable with redshifts (from 0.95 at z=0z = 0 to 0.85 at z=1.0z = 1.0). This implies the evolution of the UV-IR BLF is mainly due to the different evolution of the univariate LFs, and may not be controlled by the dependence structure.Comment: 10 pages, 7 figures, Earth, Planets and Space, in pres

    Finite temperature properties of the triangular lattice t-J model, applications to Nax_xCoO2_2

    Full text link
    We present a finite temperature (TT) study of the t-J model on the two-dimensional triangular lattice for the negative hopping tt, as relevant for the electron-doped Nax_xCoO2_2 (NCO). To understand several aspects of this system, we study the TT-dependent chemical potential, specific heat, magnetic susceptibility, and the dynamic Hall-coefficient across the entire doping range. We show systematically, how this simplest model for strongly correlated electrons describes a crossover as function of doping (xx) from a Pauli-like weakly spin-correlated metal close to the band-limit (density n=2n=2) to the Curie-Weiss metallic phase (1.5<n<1.751.5<n<1.75) with pronounced anti-ferromagnetic (AFM) correlations at low temperatures and Curie-Weiss type behavior in the high-temperature regime. Upon further reduction of the doping, a new energy scale, dominated by spin-interactions (JJ) emerges (apparent both in specific heat and susceptibility) and we identify an effective interaction Jeff(x)J_{eff}(x), valid across the entire doping range. This is distinct from Anderson's formula, as we choose here t<0t<0, hence the opposite sign of the usual Nagaoka-ferromagnetic situation. This expression includes the subtle effect of weak kinetic AFM - as encountered in the infinitely correlated situation (U=U=\infty). By explicit computation of the Kubo-formulae, we address the question of practical relevance of the high-frequency expression for the Hall coefficient RHR_H^*. We hope to clarify some open questions concerning the applicability of the t-J model to real experimental situations through this study

    Evidence for competition between the superconducting and the pseudogap state in (BiPb)_2(SrLa)_2CuO_{6+\delta} from muon-spin rotation experiments

    Full text link
    The in-plane magnetic penetration depth \lambda_{ab} in optimally doped (BiPb)_2(SrLa)_2CuO_{6+\delta} (OP Bi2201) was studied by means of muon-spin rotation. The measurements of \lambda_{ab}^{-2}(T) are inconsistent with a simple model of a d-wave order parameter and a uniform quasiparticle weight around the Fermi surface. The data are well described assuming the angular gap symmetry obtained in ARPES experiments [Phys. Rev. Lett {\bf 98}, 267004 (2007)], where it was shown that the superconducting gap in OP Bi2201 exists only in segments of the Fermi surface near the nodes. We find that the remaining parts of the Fermi surface, which are strongly affected by the pseudogap state, do not contribute significantly to the superconducting condensate. Our data provide evidence that high temperature superconductivity and pseudogap behavior in cuprates are competing phenomena.Comment: 5 pages, 3 figure

    Excited Delirium

    Get PDF
    Excited (or agitated) delirium is characterized by agitation, aggression, acute distress and sudden death, often in the pre-hospital care setting. It is typically associated with the use of drugs that alter dopamine processing, hyperthermia, and, most notably, sometimes with death of the affected person in the custody of law enforcement. Subjects typically die from cardiopulmonary arrest, although the cause is debated. Unfortunately an adequate treatment plan has yet to be established, in part due to the fact that most patients die before hospital arrival. While there is still much to be discovered about the pathophysiology and treatment, it is hoped that this extensive review will provide both police and medical personnel with the information necessary to recognize and respond appropriately to excited delirium

    High temperature expansion in supersymmetric matrix quantum mechanics

    Full text link
    We formulate the high temperature expansion in supersymmetric matrix quantum mechanics with 4, 8 and 16 supercharges. The models can be obtained by dimensionally reducing N=1 U(N) super Yang-Mills theory in D=4,6,10 to 1 dimension, respectively. While the non-zero frequency modes become weakly coupled at high temperature, the zero modes remain strongly coupled. We find, however, that the integration over the zero modes that remains after integrating out all the non-zero modes perturbatively, reduces to the evaluation of connected Green's functions in the bosonic IKKT model. We perform Monte Carlo simulation to compute these Green's functions, which are then used to obtain the coefficients of the high temperature expansion for various quantities up to the next-leading order. Our results nicely reproduce the asymptotic behaviors of the recent simulation results at finite temperature. In particular, the fermionic matrices, which decouple at the leading order, give rise to substantial effects at the next-leading order, reflecting finite temperature behaviors qualitatively different from the corresponding models without fermions.Comment: 17 pages, 13 figures, (v2) some typos correcte

    Phase Coexistence Near a Morphotropic Phase Boundary in Sm-doped BiFeO3 Films

    Get PDF
    We have investigated heteroepitaxial films of Sm-doped BiFeO3 with a Sm-concentration near a morphotropic phase boundary. Our high-resolution synchrotron X-ray diffraction, carried out in a temperature range of 25C to 700C, reveals substantial phase coexistence as one changes temperature to crossover from a low-temperature PbZrO3-like phase to a high-temperature orthorhombic phase. We also examine changes due to strain for films greater or less than the critical thickness for misfit dislocation formation. Particularly, we note that thicker films exhibit a substantial volume collapse associated with the structural transition that is suppressed in strained thin films
    corecore