9 research outputs found

    Foliar epidermis morphology in Quercus (subgenus Quercus, section Quercus) in Iran

    Get PDF
    The foliar morphology of trichomes, epicuticular waxes and stomata in Quercus cedrorum, Q. infectoria subsp. boissieri, Q. komarovii, Q. longipes, Q. macranthera, Q. petraea subsp. iberica and Q. robur subsp. pedunculiflora were studied by scanning electron microscopy. The trichomes are mainly present on abaxial leaf surface in most species, but rarely they appear on adaxial surface. Five trichome types are identified as simple uniseriate, bulbous, solitary, fasciculate and stellate. The stomata of all studied species are of the anomocytic type, raised on the epidermis. The stomata rim may or may not be covered with epicuticular. The epicuticular waxes are mostly of the crystalloid type but smooth layer wax is observed in Q. robur subsp. pedunculiflora. Statistical analysis revealed foliar micromorphological features as been diagnostic characters in Quercus

    Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy

    Get PDF
    The analysis of chemical structural characteristics of biorefinery product streams (such as lignin and tannin) has advanced substantially over the past decade, with traditional wet-chemical techniques being replaced or supplemented by NMR methodologies. Quantitative 31P NMR spectroscopy is a promising technique for the analysis of hydroxyl groups because of its unique characterization capability and broad potential applicability across the biorefinery research community. This protocol describes procedures for (i) the preparation/solubilization of lignin and tannin, (ii) the phosphitylation of their hydroxyl groups, (iii) NMR acquisition details, and (iv) the ensuing data analyses and means to precisely calculate the content of the different types of hydroxyl groups. Compared with traditional wet-chemical techniques, the technique of quantitative 31P NMR spectroscopy offers unique advantages in measuring hydroxyl groups in a single spectrum with high signal resolution. The method provides complete quantitative information about the hydroxyl groups with small amounts of sample (~30 mg) within a relatively short experimental time (~30-120 min)

    Exploring the factors affecting carbon and nutrient concentrations in tree biomass components in natural forests, forest plantations and short rotation forestry

    Get PDF
    Abstract Background Coupling biomass models with nutrient concentrations can provide sound estimations of carbon and nutrient contents, enabling the improvement of carbon and nutrient balance in forest ecosystems. Although nutrient concentrations are often assumed to be constant for some species and specific tree components, at least in mature stands, the concentrations usually vary with age, site index and even with tree density. The main objective of this study was to evaluate the sources of variation in nutrient concentrations in biomass compartments usually removed during harvesting operations, covering a range of species and management conditions: semi-natural forest, conventional forest plantations and short rotation forestry (SRF). Five species (Betula pubescens, Quercus robur, Eucalyptus globulus, Eucalyptus nitens and Populus spp.) and 14 genotypes were considered. A total of 430 trees were sampled in 61 plots to obtain 6 biomass components: leaves, twigs, thin branches, thick branches, bark and wood. Aboveground leafless biomass was pooled together for poplar. The concentrations of C, N, K, P, Ca, Mg, S, Fe, Mn, Cu, Zn and B were measured and the total biomass of each sampled tree and plot were determined. The data were analysed using boosted regression trees and conventional techniques. Results The main sources of variation in nutrient concentrations were biomass component > > genotype (species) ≈ age > tree diameter. The concentrations of Ca, Mg and K were most strongly affected by genotype and age. The concentrations of P, K, Ca, Mg, S and Cu in the wood component decreased with age, whereas C concentrations increased, with a trend to reach 50% in the older trees. In the SRF, interamerican poplar and P. trichocarpa genotypes were comparatively more efficient in terms of Ca and K nutrient assimilation index (NAI) (+ 65–85%) than eucalypts, mainly because leafless biomass can be removed. In the conventional eucalypt plantations (rotation 15 years), debarking the wood at logging (savings of 225% of Ca and 254% of Mg for E. globulus) or the use of selected genotypes (savings of 45% of P and 35% of Ca) will provide wood at a relatively lower nutrient cost. Considering all the E. globulus genotypes together, the management for pulp with removal of debarked wood shows NAI values well above (× 1.7–× 3.9) the ones found for poplar or eucalypt SRF and also higher (× 1.6–× 4.0) than the ones found for oak and birch managed in medium or long rotations. The annual rates of nutrient removal were low in the native broadleaved species but the rates of available soil nutrients removed were high as compared to poplar or eucalypts. Management of native broadleaved species should consider nutrient stability through selection of the biomass compartments removed. Conclusions The nutrient assimilation index is higher in poplar grown under short rotation forestry management than in the other systems considered. Nutrient management of fast growing eucalyptus plantations could be improved by selecting efficient genotypes and limiting removal of wood. The values of the nutrient assimilation index are lower in the natural stands of native broadleaved species than in the other systems considered

    RNA-Seq reveals genotype-specific molecular responses to water deficit in eucalyptus

    Get PDF
    * Background : In a context of climate change, phenotypic plasticity provides long-lived species, such as trees, with the means to adapt to environmental variations occurring within a single generation. In eucalyptus plantations, water availability is a key factor limiting productivity. However, the molecular mechanisms underlying the adaptation of eucalyptus to water shortage remain unclear. In this study, we compared the molecular responses of two commercial eucalyptus hybrids during the dry season. Both hybrids differ in productivity when grown under water deficit. * Results : Pyrosequencing of RNA extracted from shoot apices provided extensive transcriptome coverage - a catalog of 129,993 unigenes (49,748 contigs and 80,245 singletons) was generated from 398 million base pairs, or 1.14 million reads. The pyrosequencing data enriched considerably existing Eucalyptus EST collections, adding 36,985 unigenes not previously represented. Digital analysis of read abundance in 14,460 contigs identified 1,280 that were differentially expressed between the two genotypes, 155 contigs showing differential expression between treatments (irrigated vs. non irrigated conditions during the dry season), and 274 contigs with significant genotype-by-treatment interaction. The more productive genotype displayed a larger set of genes responding to water stress. Moreover, stress signal transduction seemed to involve different pathways in the two genotypes, suggesting that water shortage induces distinct cellular stress cascades. Similarly, the response of functional proteins also varied widely between genotypes: the most productive genotype decreased expression of genes related to photosystem, transport and secondary metabolism, whereas genes related to primary metabolism and cell organisation were over-expressed. * Conclusions : For the most productive genotype, the ability to express a broader set of genes in response to water availability appears to be a key characteristic in the maintenance of biomass growth during the dry season. Its strategy may involve a decrease of photosynthetic activity during the dry season associated with resources reallocation through major changes in the expression of primary metabolism associated genes. Further efforts will be needed to assess the adaptive nature of the genes highlighted in this study.International Mobility Programme to Strengthen Skills and Excellence in Research for Agricultur
    corecore