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5

6The analysis of chemical structural characteristics of biorefinery Q1product streams (such as lignin and tannin) has Q2
7advanced substantially over the past decade, with traditional wet-chemical techniques being replaced or supplemented by
8NMR methodologies. Quantitative 31P NMR spectroscopy is a promising technique for the analysis of hydroxyl groups
9because of its unique characterization capability and broad potential applicability across the biorefinery research
10community. This protocol describes procedures for (i) the preparation/solubilization of lignin and tannin, (ii) the
11phosphitylation of their hydroxyl groups, (iii) NMR acquisition details, and (iv) the ensuing data analyses and means to
12precisely calculate the content of the different types of hydroxyl groups. Compared with traditional wet-chemical
13techniques, the technique of quantitative 31P NMR spectroscopy offers unique advantages in measuring hydroxyl groups
14in a single spectrum with high signal resolution. The method provides complete quantitative information about the
15hydroxyl groups with small amounts of sample (~30 mg) within a relatively short experimental time (~30–120 min).

16
Introduction

17Over the past decade, advances in genetic engineering and biotechnology have led to a new manu-
18facturing concept directed at converting renewable lignocellulosics to valuable fuels and products,
19generally referred to as the biorefinery1. The development of biomass-based biorefineries, in turn,
20has been the main impetus for developing methods to assess the characteristics of the biorefinery
21feedstocks, process intermediates, and final products. A strong case can be made that substrate
22characterization in biorefinery has emerged as a research field in its own right. Characterization of
23biorefinery resources has been examined by several state-of-the-art analytical techniques including
24Fourier transform infrared spectroscopy (FTIR)2, fluorescence spectroscopy3, HPLC4, gas
25chromatography–mass spectrometry (GC–MS)5, NMR spectroscopy6, gel permeation chromato-
26graphy (GPC)7, scanning electron microscopy8, tunneling electron microscopy9, atomic force
27microscopy10, Raman spectrometry11, time-of-flight secondary ion mass spectrometry (ToF-SIMS)12,
28and small-angle neutron scattering13 along with a host of wet-chemistry and biological assays. Q3
Q4Q5Q6
29Phosphitylation followed by 31P NMR spectroscopy analysis is a promising technique for the
30analysis of hydroxyl groups. Since the initial publication series entitled “31P NMR in wood chem-
31istry”14–21, over 500 research efforts have used or adopted the proposed technique for the analysis of
32lignins and other biomass-related products and product streams. However, a survey of the literature
33identified that on occasion there have been some iterations of the method (mainly related to internal
34standards (ISs), solvents used, and sometimes data interpretation) without clear experimental data
35justifying these choices, which may lead to misleading results. Hence, at this juncture, there is a clear
36need to publish a well-defined protocol to help maintain and promote the scientific accuracy and
37uniform application of this valuable methodology as currently used by both academia and industry.
38In this protocol, we describe how to perform quantitative 31P liquid-state NMR spectroscopy analysis
39on various organosolv lignin and tannin samples22,23. In all cases, the samples need to be sulfur free,
40rich in hydroxyl groups, and of limited carbohydrate contamination. The same protocol can also be
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41extended to polymer chemistry24–26 and biological systems such as lipid metabolites27, as long as
42hydroxyl and carboxyl groups are presented.

43Structure of lignin and tannin
44Lignin, a 3D heterogeneous phenolic polymer in the plant cell wall, is generated in substantial
45amounts in most current biorefinery systems that focus mainly on converting plant polysaccharides
46to liquid fuels. In lignocellulosic plants, lignin is synthesized by combinatorial free radical poly-
47merization of phenylpropanoid monomers, namely, coniferyl, sinapyl, and p-coumaryl alcohols,
48giving rise to guaiacyl (G), syringyl (S), and p-hydroxyphenyl (H) subunits28. In addition, other types
49of flavonoids, stilbenes, and hydroxyphenylpropanoid compounds including tricin29, hydro-
50xystilbenes30, hydroxycinnamaldehydes31, hydroxycinnamyl acetates32, dihydrocinnamyl alcohols33,
51and the catechol-based hydroxycinnamyl alcohols caffeyl and 5-hydroxyconiferyl alcohols34, all
52derived from the monolignol biosynthetic pathway, have also been reported to be subunits of lignin in
53either wild-type or transgenic plants35. The C9 phenylpropane units are primarily connected through
54ether (e.g., β-O-4, α-O-4, 4-O-5) and carbon–carbon (e.g., β-β, β-5, β-1, 5-5) linkages, with β-O-4
55being the dominant linkage. The lignin macromolecule also contains various functional groups
56including hydroxyl, carbonyl, methoxy, and carboxyl groups that have an effect on lignin’s reactivity.
57A representative structure of hardwood lignin is shown in Fig. 1, which does not depict the actual
58structure of lignin but outlines the common linkages and functional groups known to occur in lignin
59and their relative frequencies determined by NMR spectroscopy studies36,37. Despite high-value
60opportunities, lignin is still significantly Q7underutilized in the current biorefinery systems, with the
61bulk of technical lignins being used to meet internal energy demands by combustion28. The effective
62use of lignins in a future integrated biorefinery process strongly depends on the fundamental
63understanding of their chemical structures, and consequently, the structural analysis of lignin has
64indeed become a subdiscipline of its own28. The inherent structural complexity of lignin brings
65substantial barriers to traditional analytical methods. Although a suite of methods have been
66developed, such as thioacidolysis38, oximation39, ozonation40, alkaline nitrobenzene oxidation41,
67permanganate oxidation42, and derivatization followed by reductive cleavage (DFRC)43, these tech-
68niques usually suffer from disadvantages such as being tediously laborious and involving many steps
69prone to significant error44.
70Proanthocyanidins are flavan-3-ol-based oligomers and polymers, also termed condensed tannins.
71They are ubiquitous in plants and constitute up to 40% of the dry weight of the bark in several
72species45–48. Their structures are depicted in Fig. 222,49,50. Proanthocyanidins are currently exploited
73in a wide range of applications, including use in dyes for inks and textiles, waste water amendment,
74adhesives, binder formulations, biomedical and nutraceutical compounds, cosmetics, and food. The
75phenolic substitution patterns in rings A and B are characteristic of each proanthocyanidin species, as
76shown in Fig. 2c22. Ring B presents either a catechol or a pyrogallol hydroxylation pattern, whereas
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77the phenolic distribution in ring A has a resorcinol or phloroglucinol hydroxylation pattern. These
78structural features determine the complexing, antioxidant, and biological properties of tannins50–52.
79The specific phenolic substitution patterns result in different responses to the commonly used
80analytical protocols based on the determination of the phenolic groups’ content or protein pre-
81cipitation53–55. This implies that the overall amount of proanthocyanidin or phenolic groups in a
82sample cannot be reported as a single value and does not allow the use of specific standards.

83Methods for characterization of lignin and tannin
84Lignin and tannin characterization has advanced substantially over recent decades, with conventional
85methods being replaced or supplemented by chromatographic and spectroscopic approaches such as
86pyrolysis GC–MS56, ToF-SIMS12, FTIR57, near-infrared spectroscopy (NIR)58, and NMR59. Among
87these techniques, no other single technique has been more comprehensively used to offer structural
88insight into lignin than NMR technology, which has advanced the structural knowledge of lignin.
89Simple 1D 1H and 13C NMR have been widely used to characterize alkyl groups, aliphatic/phenolic
90hydroxyl groups, methoxy groups, aromatic O/C/H structures, aldehydes, ketones, and β-O-4 sub-
91structures in lignin60,61. 2D heteronuclear single-quantum coherence (HSQC) NMR is also attracting
92significant attention owing to its versatility in the determination of lignin interlinkages and subunits,
93lignin–carbohydrate complexes (LCCs)62,63. Both 13C NMR (liquid state and cross-polarization magic
94angle spinning solid state) and HSQC NMR have been used to determine the compositional aspects of
95tannins64–66. Furthermore, some gel-state and liquid-state 2D whole-cell-wall NMR techniques using
96different solvent systems such as dimethyl sulfoxide (DMSO)-d6, DMSO-d6/pyridine-d5, and DMSO-
97d6/deuterated hexamethylphosphoramide have been introduced to provide insights into the full array
98of polymers that comprise the plant cell wall, and this procedure requires only fine grinding of the
99biomass59,67–69. In spite of the advances in these NMR approaches, both 1D (e.g., 1H and 13C NMR)
100and 2D correlation (e.g., HSQC) techniques have their own limitations: 2D NMR is typically not fully
101quantitative, and 1D NMR usually suffers from the spectral overlap of functionality. More recently,
102the elucidation of lignin structure by quantitative 2D HSQC (Q-HSQC) NMR pulse sequences has
103been developed and has provided invaluable contributions to the understanding of lignin’s structural
104details, including the degree of polymerization and the presence and role of branch units70–73.
105However, Q-HSQC still cannot provide full quantitative information related to the nature and
106amount of the specific functional groups present on the lignin backbone.
107An alternative approach to the abovementioned 13C and 1H NMR methodologies is to selectively
108label functional groups such as hydroxyl groups with a specific NMR-active nucleus and then analyze
109the derivatized substrate by NMR. These active nuclei normally have much broader chemical shift
110ranges with less signal overlap and less interference from the homonuclear coupling. Most important,
111however, is the fact that the solvent normally has no effect on the NMR signal and thus solvent
112suppression is not necessary74. Phosphitylation followed by 31P NMR analysis was one of the first
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113methodologies to use this approach to characterize the hydroxyl groups in coal pyrolysis condensates
114and lignins14–16,75. With appropriate phosphorus reagents, different hydroxyl groups including
115aliphatic, phenolic, and carboxylic, may now be readily quantified with 31P NMR spectroscopy.
116Hydroxyl groups, particularly phenolic, are one critical functionality that affects the physical and
117chemical properties of lignin and tannins. The role of the phenolic hydroxyl groups in lignin has been
118reported to be extremely important for its overall reactivity76. For example, the existence of phenolic
119hydroxyl groups in lignin is known to promote the base-catalyzed cleavage of interunit linkages of
120lignin and oxidative degradation in the commercial pulping process76. Furthermore, the phenolic
121hydroxyl group is critical in determining antioxidant activity77, thermal and oxidative character-
122istics78,79, and the properties of the resulting materials77,80. A recent study also suggests that the
123condensed phenolic hydroxyl groups are a primary component in the nonproductive binding
124between lignin and cellulase enzymes, which detrimentally affects the biological conversion of bio-
125mass to simple sugars and subsequently the production of biofuels62. The content and regiochemical
126details of phenolic hydroxyl groups also regulate the protein-binding capacities and antioxidant
127activities of tannins81. Thus, the quantitative determination of hydroxyl groups in lignin and tannins
128is essential, offering vital information related to the chemical and biological reactivity of lignin and
129tannins in various biorefinery processes. In the following sections we provide an overview of the
130

31P NMR analysis protocol, using lignin as an example, as well as the development and application of
131this NMR technique in other areas.

132Overview of the 31P NMR protocol
133A typical 31P NMR experiment involves the phosphitylation of hydroxyl groups in the substrate
134using an appropriate 31P reagent (Steps 3–7) followed by quantitative NMR spectroscopy analysis
135(Steps 8–13), data processing (Steps 14–18), and calculation of the amounts of different hydroxyl
136groups (Steps 19–23). Since the introduction of 2-chloro-4,4,5,5-tetramethyl-1,3-2-dioxaphospholane
137(TMDP) in 1995, the reagent has seen wide applicability, and it is now the most commonly employed
138phosphitylating reagent for hydroxyl group analysis of biorefinery resources82. Figure 3 shows the
139phosphitylated products of the reaction between various hydroxyl groups (e.g., aliphatic, phenolic,
140and carboxylic acid) in lignin and TMDP in the presence of a solvent mixture of pyridine (major) and
141deuterated chloroform (minor). The HCl liberated during the reaction could cause decomposition to
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142the derivatized compounds, but it is captured by the excess amount of pyridine in the solvent mixture
143used, to form a pyridine–HCl salt. Deuterated chloroform is also added, offering a triple function:
144it helps dissolve the sample (along with the added pyridine), it prevents precipitation of the
145pyridine–HCl salt, and it provides the necessary deuterated signal for NMR signal locking. For the
146analysis of other types of polymers that have good solubility in CDCl3, the amount of pyridine in
147the solvent mixture can be reduced, as it serves only as an HCl-trap reagent in that case. After
148phosphitylation, a quantitative 31P NMR spectrum can then be recorded and the phosphitylated
149hydroxyl groups are subsequently quantitatively assessed against an internal standard (IS). Figure 4
150shows a typical 31P NMR spectrum of hardwood lignin derivatized with TMDP using N-hydroxy-5-
151norbornene-2,3-dicarboximide (NHND) as an IS. The selection of solvent, 31P reagent, and IS, as
152well as the peak assignments and integration regions, is further discussed in detail in the
153following sections.

154Development of the 31P NMR protocol
155In the early and mid-1990s, Argyropoulos’s group published a series of papers with the general title
156“31P NMR in Wood Chemistry” focused on determining the hydroxyl groups in lignin model
157compounds, carbohydrates, LCCs, and lignins derived from various processes14–21. In these papers,
158an extensive effort using 2-chlorine-1 Q8,3,2-dioxaphospholane (CDP) as the phosphorus reagent was
159made to prove that different hydroxyl groups in model compounds including carboxylic acid,
160guaiacyl, syringyl, and p-hydroxyphenyl offered notably well-separated 31P NMR signals. Further-
161more, significant differentiation also occurred between primary and secondary hydroxyl groups and
162between the erythro and threo conformations of β-O-4 structures, as they gave rise to sharp, single,
163and well-separated 31P NMR signals16,83. Subsequent studies suggested that one of the drawbacks of
164using CDP as the phosphorus reagent is that signal overlap is usually observed between syringyl
165phenolic, primary hydroxyls, and C5 substituted condensed phenolic groups82,84. To address this
166issue, Argyropoulos recommended the use of another phosphitylation reagent, namely, TMDP, which
167has now become the most commonly used phosphitylating reagent for hydroxyl group analysis in
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168lignin82, tannins22,81,85, synthetic aromatic polymers26, and edible oils86–93. This was found to be
169particularly effective in terms of providing considerably better signal resolution for the uncondensed
170and condensed phenolic moieties in lignin82. Furthermore, Jiang and Argyropoulos showed that the
171coupling of Mannich chemistry on the lignin followed by 31P NMR offered an additional means to
172resolve even more the guaiacyl groups in softwood technical lignins from minor overlapping signals
173caused by condensed moieties94. Notably, the 31P NMR technique has been further validated by an
174examination of a series of lignins that was the subject of an international analytical round-robin effort
175using independent methods of analysis82,95.
176Historically, benzoic acid96, bisphenol26, cholesterol97, and cyclohexanol82 have all been used as ISs
177in 31P NMR analysis of lignin. However, these ISs overlapped with the resonance of lignin moieties,
178causing an incomplete baseline resolution and subsequently leading to underestimated values for
179lignin hydroxyl groups84. In the early 2000s, Ragauskas’s group introduced NHND as a promising
180alternative IS in 31P NMR analysis of lignin owing to its ability to be fully baseline resolved from
181lignin-derived resonances98. His group has applied 31P NMR using this IS to diverse areas including
182the characterization of transgetic and pretreated biomass99–101. In addition, Argyropoulos’s group
183carried out extensive studies to elucidate the spin-lattice relaxation times and solvent effects on the
184

31P NMR chemical shifts and arrived at the now universally used relaxation additive (chromium
185acetylacetonate) and the mixture of pyridine and CDCl3 at the ratio of 1.6:1 as the solvent15,20. The
186above developments have allowed Crestini’s group to show that 31P NMR allows the straightforward
187assignment of the structural details of both hydrolysable and condensed tannins22,81,85. Recent
188advances in NMR technology, including the development of cryogenic probes and pulse-shaping
189software, have made it possible to acquire a spectrum from the whole plant cell wall without any
190laborious isolation of individual biomass components59,69. Furthermore, Argyropoulos’s group has
191developed various imidazole-type ionic liquids to dissolve and characterize cellulose and the whole
192plant cell wall at elevated temperatures (~80–100 °C) via quantitative 31P NMR analysis102–105. In a
193recent study, Ben’s group reported that a pyridine-based ionic liquid, 1-allyl-3-butylpyridinium
194chloride, was capable of dissolving the whole biomass at low temperature (50 °C) and could be used
195in conjunction with the 31P NMR methodology, thus providing a promising approach to quantita-
196tively assess the hydroxyl groups in biomass as their original structures106. The broad applicability of
197this technique within the biorefinery research community is demonstrated in the following section.

198Applications of the 31P NMR protocol
199Nowadays, the quantitative 31P NMR technique is widely used in characterizing hydroxyl groups of
200biorefinery resources. It has been used to determine the functional groups of different industrial
201technical lignins including herbaceous lignins (soda and organosolv wheat straw), hardwood lignin
202(Alcell and organosolv poplar), and softwood lignin (Indulin Kraft, organosolv spruce)73,107. Biomass
203pretreatment, an important step to overcome biomass recalcitrance, often requires elevated tem-
204peratures under acidic or alkaline conditions. A large variety of depolymerization or condensation
205reactions typically occur within the lignin structure under such conditions. Quantitative 31P NMR
206analyses of lignins isolated from various biomass pretreatment technologies have been highlighted in
207recent studies101,108–117. As lignin has become a key genetic engineering target for the enhancement of
208wood quality and biofuel production118,119, quantitative 31P NMR analyses also have been carried out
209on transgenic lignin97,120. Use of the 31P NMR methodology along with DFRC offers unique infor-
210mation about etherified and carbon–carbon linked bonding patterns in lignin121. Fu et al.122 initially
211adopted quantitative 31P NMR to understand the nature of pyrolysis oils. 31P NMR was used by other
212researchers to track the water content of pyrolysis oil, as well as the chemical transitions of bio-oil
213that take place during pyrolysis of biomass and the ensuing catalytic upgrading processes123–128.
214Following these efforts, a laboratory analytical procedure for the quantification of hydroxyls in bio-oil
215has been developed by National Renewable Energy Laboratory129. Functional groups of LCCs in
216softwood and hardwood might be also analyzed by quantitative 31P NMR analysis130,131. Biomass
217impurities, tricin, and tricin-like flavonoid derivatives were also successfully identified by this 31P
218NMR technique in recent studies132,133. 31P NMR was also used to analyze the structural details of
219both hydrolysable and condensed tannins22,81,85. More specifically, the 31P NMR technique provides a
220deep analysis of the substitution patterns in rings A, B, and C of the proanthocyanidins (Fig. 2), the
221acquisition of a specific fingerprint, and the determination of the purity of samples in complex
222matrices22. The principles and applications of this highly useful methodology involving quantitative
223

31P NMR in biomass, lignin, and biofuel precursor characterization have been summarized in two
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224critical reviews21,134. Furthermore, in a series of food-chemistry-related studies, Dais’s group
225successfully applied this 31P NMR technique on olive oils to quantify several minor compounds
226including phenolic compound, sterols, glycerol, and free acidity. Their studies have concluded that
227the application of this technique could be seamlessly extended to other edible oils, foods, and
228beverages for the purposes of quality control and authentication86–93.

229Advantages and limitations of the 31P NMR protocol
230To date, many approaches have been developed to determine the hydroxyl groups in lignin and
231tannins. These methodologies have been compared in several publications135–138. It was reported that
232the values of hydroxyl groups in lignins determined by 31P NMR are in good agreement with the
233values obtained by other independent techniques such as FTIR/pyrolysis, the conductometric titra-
234tion method, and 1H and 13C NMR spectroscopy96,139. Compared with traditional wet-chemical
235techniques, 31P NMR offers unique advantages in determining hydroxyl groups in a single spectrum
236with great signal resolution. It allows the discrimination of the phenolic hydroxyl groups attached to
237syringyl, guaiacyl, and p-hydroxyphenyl units instead of simply offering the total aromatic hydroxyl
238groups. The method requires only small amounts of sample (~30 mg) and can be carried out within a
239relatively short experimental time (~30–120 min).
240Nevertheless, the technique has its limitations. One of these is that the phosphorus reagent TMDP is
241pricey (€107/g in Europe, or $133/g in the US) and currently not widely commercially available among
242the common chemical suppliers. Its availability is not always guaranteed, which makes the use of 31P
243NMR for the ‘screening’ of process parameters in biorefineries quite limited. However, Argyropoulos’s
244group has arrived at a detailed protocol for its synthesis, which can be supplied upon request. As an
245NMR analysis, it always requires expensive hardware and specialized technical support. 31P NMR in
246particular also requires high-purity samples (free of moisture, ash, sulfur, and carbohydrates) and
247sufficient solubility of samples in appropriate solvents. Signal overlap in phenolic regions caused by
248similar aromatic ring substitution patterns is another issue. Specifically, hydroxyl groups in lignin
249syringyl units are typically difficult to separate from the condensed guaiacyl units, which can cause
250biased integration by simply splitting unresolved resonance signals84. Derivatized samples and some
251ISs are not stable after a long period of storage, which requires an almost instant 31P NMR acquisition.
252Finally, the existence of amine groups can also interfere with the quantification of the hydroxyl groups
253in some cases, such as preparations including large amounts of enzyme contamination.

254Experimental design
255Substrate solubilization
256The complete solubilization of the substrate in an appropriate solvent is an essential prerequisite for
257an accurate quantitative liquid-state NMR measurement. A mixture of deuterated chloroform and
258pyridine is the suggested solvent, based on the early identified principles for 31P NMR analysis of
259lignin, bio-oil, tannins, and other types of biorefinery resources15. The solvent used certainly can be
260adjusted on the basis of the properties or solubility of the substrates being analyzed. For lignin samples
261with limited solubility in chloroform and pyridine, N,N-dimethylformamide (DMF) could be intro-
262duced as a third solvent to help facilitate solubilization134,140,141. In a recent study, Stücker et al.142

263reported that a novel solvent system containing DMF, deuterated DMF, and pyridine (4.5:1:1 (vol/vol/
264vol)) is capable of fully dissolving sulfonated lignins. Pre-swelling of lignosulfonates in DMSO also
265proved to be an effective way to overcome the solubility obstacle of lignosulfonates in the conventional
266deuterated chloroform and pyridine solvent mixture140. The same study also showed that although
267sonication can improve the solubility of lignin, it can also cause a dramatic increase of the aliphatic
268and phenolic OH groups, which is suggestive of depolymerization of lignin. Thus sonication is not
269recommended. When new solvents are introduced to help facilitate such analyses, one should always
270ensure their inert nature toward the phosphitylating reagents and the 31P NMR chemical shift
271dependency principles developed in the literature15. In this respect, completely new solvents or solvent
272mixtures may necessitate extensive verification of chemical shift integration ranges, as those originally
273proposed by the McGill team might not be valid in the new solvent system14–17,26.

274Internal standards
275NHND has proved to be one of the most effective ISs in 31P NMR analysis of lignin; however, it is not
276stable after a long period of storage, and another type of IS such as cholesterol or triphenylphosphine
277oxide (TPPO) should be used instead if a long-term experiment or extended sample storage is
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278required143. For example, cholesterol has proved to be an excellent IS in 31P NMR analysis of tannins
279owing to its long-time stability. The chemical shift of phosphitylated cholesterol (~144.8 p.p.m.) also
280does not overlap with other tannin functional groups81. In the case of pyrolysis oils, TPPO was
281considered as the best IS129,143. The derivatization reagent used in 31P NMR analysis can react with
282water almost instantly, and thus a dry sample is essential. In addition, it is critical to ensure dry
283sample preparation conditions. All solvents to be used in the analysis should be of high purity and
284anhydrous. It is thus highly recommended that a fresh solvent mixture be prepared for each analysis
285set and that activated molecular sieves be used to minimize the moisture content.

286NMR acquisition
287In terms of the NMR acquisition, the inverse gated decoupling pulse needs to be routinely used to
288minimize the nuclear Overhauser effect enhancement for quantitative measurements21,82. Chromium
289(III) acetylacetonate is usually introduced into the solvent system as a relaxation agent to shorten the
290spin-lattice relaxation time of the phosphorus nuclei82,97. A relatively long interpulse delay (≥10 s) is
291also required in order to ensure complete spin relaxation before the application of a subsequent
292radiofrequency pulse134,140. The spectra quality should be judged on the basis of characteristics such
293as flat baseline, sharp and phased peaks, and the absence of spectral artifacts. The chemical shift is
294usually internally calibrated relative to the sharp peak at around 132.2 p.p.m. (Fig. 4) arising from the
295phosphitylation product of TMDP with water and ~121.1 p.p.m. for the case of CDP82,95.

296Materials
297c CRITICAL None of the equipment and reagents described below have to be obtained from specific suppliers. Alternative similar
298equipment and identical chemicals from different suppliers may certainly be used; however, it is highly recommended to use the same
299product specifications listed below to ensure accuracy. The use of appropriate personal protective equipment to minimize exposure to

300
hazardous materials is also essential.

301Biological materials
302● Lignin c CRITICAL Lignin samples that have been analyzed successfully using this protocol include
303organosolv lignin derived from aqueous ethanol pretreated (180 °C, 1.25% H2SO4, 60% ethanol,
30460 min) hardwood poplar, herbaceous switchgrass, and softwood pine. In all cases, the organosolv
305lignin, which is sulfur free, is rich in OH functionality, is low ash, and has limited carbohydrate
306contamination, is precipitated and recovered from the concentrated pretreatment liquor according to
307procedures described in the literature23.
308● Tannin c CRITICAL For this work, Quebracho Colorado (Schinopsis balansae) was collected in the
309Chaco region between Argentina and Paraguay, and black wattle (Acacia mearnsii) was collected in
310Tanzania. The plant material was collected, identified, and certified by SilvaTeam. The extracts studied
311are commercial samples obtained from S. balansae wood and A. mearnsii bark kindly supplied by
312SilvaTeam. Epigallocatechin gallate was supplied by Sigma-Aldrich.

313Reagents
314● Acetone (Sigma Q9-Aldrich, cat. no. 650501) ! CAUTION Acetone is an extremely flammable liquid and
315an eye irritant. Inhalation and contact with skin should be prevented.
316● Chloroform-d (Sigma-Aldrich, cat. no. 151823) ! CAUTION Chloroform-d is a skin/eye irritant,
317carcinogenic, and toxic if inhaled. Inhalation and contact with skin should be prevented.
318● Cholesterol Q10(Sigma-Aldrich, cat. no. C8667)
319● Chromium(III) 2,4-pentanedionate (Alfa Aesar, cat. no. 12538)
320● Drierite (Sigma-Aldrich, cat. no. 238988)
321● Pyridine anhydrous (Sigma-Aldrich, cat. no. 270970) ! CAUTION Pyridine anhydrous is an extremely
322flammable liquid and a skin/eye irritant. Inhalation and contact with skin should be prevented.
323● 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane (TMDP; Sigma-Aldrich, cat. no. 447536)
324! CAUTION TMDP can cause severe skin burns and eye damage. Inhalation and contact with skin
325should be prevented.
326● Molecular sieves (type 3A; Sigma-Aldrich, cat. no. MX1583C)
327● N-hydroxy-5-norbornene-2,3-dicarboxylic acid imide (NHND; 97%; Sigma-Aldrich, cat. no. 226378)
328● N,N-dimethylformamide (DMF; Sigma-Aldrich, cat. no. 227056) ! CAUTION DMF is a flammable
329liquid and a skin/eye irritant. Inhalation and contact with skin should be prevented.
330● Calcium sulfate
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331Equipment
332● Analytical balance Q11(Sartorius, model no. BP 210 S, or equivalent)
333● Drierite gas-drying unit (Sigma-Aldrich, cat. no. Z112879, or equivalent)
334● Hamilton glass gastight syringes (Hamilton, cat. nos. 81243 and 81000, or equivalent)
335● Glass vials (Sigma-Aldrich, cat. no. 27345, or equivalent)
336● Glass Pasteur pipette (Sigma-Aldrich, cat. no. Z628018, or equivalent)
337● Glass desiccator (Sigma-Aldrich, cat. no. SLW1591/02D, or equivalent)
338● NMR tubes (Sigma-Aldrich, cat. no. Z272019, or equivalent)
339● Stirring plate (Sigma-Aldrich, cat. no. CLS6795420D, or equivalent)
340● Stir bars (Sigma-Aldrich, cat. no. Z126942, or equivalent)
341● NMR spectrometer (e.g., Bruker Avance III HD 500-MHz with 5-mm BBO probe, capable of 31P
342detection, or equivalent)
343● Vacuum oven (VWR, model no. 1400E, or equivalent)

344Software
345● NMR acquisition and processing software (Bruker Topspin 3.5pl7, or equivalent)
346● MestReNova and VnmrJ

347Reagent setup
348Solvent A
349Prepare 10.0 mL of a solvent mixture (solvent A) composed of deuterated chloroform and
350anhydrous pyridine at a volume ratio of 1:1.6 (vol/vol). Solvent A can be stored at room temperature
351(20–25 °C) for up to 4 weeks over molecular sieves in a sealed container that has a hole cap with
352a PTFE-lined silicone septum. Wrap the cap of the container with moisture-resistant Parafilm.
353c CRITICAL Anhydrous pyridine is normally stored in a crown-cap bottle that has a hole in the cap and
354a PEFE Q12-faced rubber liner under the crown-cap. It needs to be dispensed from the reagent bottle under
355inert atmosphere (e.g., N2). Insert a needle connected to a Schlenk line or regulated low-pressure N2

356source equipped with a laboratory Drierite gas-drying unit into the septum to fill the space above the
357liquid with the inert gas inside the bottle. Use another glass gastight syringe as an outlet to withdraw the
358liquid from the container.

359IS solution
360Prepare a solution of chromium(III) 2,4-pentanedionate (Cr(acac)3) by using solvent mixture A at a
361concentration of ~5.0 mg/mL, sealed from the atmosphere. Add NHND to the Cr(acac)3 solution at a
362concentration of ~18.0 mg/mL (~0.1 M). Record the actual weight of NHND. This solution will be
363referred to as the IS solution. Record the actual weight of the entire IS solution (containing both Cr
364(acac)3 and NHND). Store the IS solution over molecular sieves in a sealed container equipped with a
365PTFE-lined silicone septum, and wrap the cap of the container with moisture-resistant Parafilm.
366c CRITICAL For 31P NMR analysis of tannins or other types of substrate that need a long-term
367experiment or extended sample storage, it is recommended to use cholesterol as the IS. In that case, add
368cholesterol to the Cr(acac)3 solution at a concentration of ~38.67 mg/mL (~0.1 M). Record the actual
369weight of cholesterol and the entire IS solution.

370
Procedure

371Sample setup ● Timing ~24 h
3721 Place the lignin or the tannin sample into a vacuum oven at ~45 °C and allow it to dry until a
373constant weight is attained (~24 h).
3742 Cool the samples to 25 °C in a glass desiccator over anhydrous calcium sulfate. 375

376NMR solution setup ● Timing ~30 min–12 h
3773 Transfer ~0.1 mL of the IS solution (see ‘Reagent setup’ section) into a 4-mL glass vial equipped
378with a PTFE-lined silicone septum. Record the actual weight of the 0.1 mL of IS solution.
3794 Add ~30 mg of pre-dried lignin or tannin sample from Step 2 into the same vial. Record the actual
380weight of the samples to the nearest 0.1 mg.
3815 Use a glass gastight syringe to add ~0.5 mL of solvent A (see ‘Reagent setup’ section) into the same
382vial with constant stirring, using a magnetic stirrer. Note: stir the solution overnight (~12 h) to fully
383dissolve the lignin or tannin samples if necessary (depending on the nature of the sample).
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384c CRITICAL STEP Treat solvent A as an anhydrous solvent and transfer the solvent under an inert
385atmosphere as described in the ‘Reagent setup’ section. Make sure the substrate is fully dissolved in
386the solvent mixture, as this is the key step for an accurate quantitative analysis.
387? TROUBLESHOOTING
3886 Add ~0.1 mL of TMDP to the homogeneous lignin or tannin solution by using a glass gastight
389syringe, and wash the syringe with acetone immediately.
390c CRITICAL STEP Excess amounts of TMDP need to be added so that all the hydroxyl group can be
391phosphitylated. ~0.1 mL of TMDP is more than enough for typical lignin or tannin analyses.
392However, for samples such as pyrolysis oil that may contain a significant amount of moisture and
393hydroxyl groups, up to 0.2 mL of TMDP should be added.
394c CRITICAL STEP TMDP should not be added until a homogeneous solution is formed.
395c CRITICAL STEP TMDP reacts with water almost instantly, producing a yellow precipitate in the
396reagent bottle. Thus TMDP should be transferred into a vial equipped with a PTFE-lined silicone
397septum so that it can be withdrawn from the container without the need to remove the cap.
398j PAUSE POINT The vial and original TMDP container should be wrapped with Parafilm and can
399be kept in a freezer at −20 °C for several days.
4007 Shake the mixture for ~30 s to several minutes and confirm that no precipitates are formed.
401c CRITICAL STEP As long as a homogeneous solution is formed, the solution should be analyzed
402by NMR immediately. The phosphitylation derivative of NHND is not stable over a long period of
403time, and long-term storage will therefore lead to inaccurate measurements. If cholesterol or
404triphenylphosphine oxide is used as the IS (see ‘Experimental design’ section), the sample can be
405stored for up to several hours.
406? TROUBLESHOOTING 407

408NMR measurement ● Timing ~30 min to 2 h
4098 Transfer all the phosphitylated lignin or tannin solution from Step 7 into a 5-mm NMR tube via
410a glass Pasteur pipette.
4119 Load the sample tube into the NMR spectrometer with an appropriate probe capable of 31P
412detection.
41310 Set up the NMR parameters using the following recommended conditions:
414

415

416418419

420Spectrometer 421Bruker Avance III HD 500 MHz

422Pulse program 423Inverse gated decoupling pulse (zgig)

424Nucleus 42531P

426Spectral width (SW) 427100 p.p.m.

428Acquisition time (AQ) 429~0.8 s

430Relaxation delay (D1) 431≥10 s

432Number of scans (NS) 43364 or more

434Center of spectrum (O1P) 435140 p.p.m. 436
437

438

439c CRITICAL STEP More scans (128 or 256) could lead to an increased signal-to-noise ratio (S/N) at
440the cost of a longer experiment time. For 300-MHz spectrometers, a minimum of 128 scans is
441needed.
442c CRITICAL STEP Bruker Avance III HD 500 MHz and Topspin 3.5 were used for NMR data
443acquisition and processing in this study. Equivalent experiments could also be performed on other
444NMR systems such as Agilent/Varian and JEOL, and the nomenclature for setting and parameters
445could be different. The obtained data could be processed via different software (e.g., MestReNova
446and VnmrJ) as well.
44711 Lock the spectrometer frequency to the deuterium resonance arising from the NMR solvent (CDCl3).
44812 Shim the sample and tune the NMR probe using either manual or automated methods following
449the instructions provided by the manufacturer.
45013 Acquire the 31P spectra by applying the standard Bruker inverse gated decoupling pulse sequence. 451

452Data processing ● Timing ~20 min
45314 Apply NMR processing commands to process the FID and calculate the spectrum (Bruker
454command: efp) and to perform automatic phase correction (Bruker command: apk).
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45515 Make sure there is a sharp signal around 175 p.p.m. representing the extra TMDP peak.
456? TROUBLESHOOTING
45716 Calibrate the chemical shift by assigning the sharp TMDP + H2O peak at 132.2 p.p.m. (Fig. 4).
45817 Adjust the zero and first order phasing of the spectra to make all the peaks as symmetrical as
459possible.
46018 Integrate the NMR peak regions with respect to the IS (NHND) peak based on the assignments
461described in Table 1 (for lignins) and Table 2 (for tannins).
462c CRITICAL STEP Certain 31P NMR spectra may show a distorted baseline that could prevent
463accurate integration of the peaks. A baseline correction should always be applied. Automatic
464baseline correction works in the majority of cases. The user can also carry out baseline correction
465manually by defining a polynomial function to subtract from the spectrum. Peak simulation or
466advanced line shape fitting is not necessary for the 31P NMR protocol.
467c CRITICAL STEP The chemical shift assignments described in Tables 1 and 2 are based on 31P
468NMR analysis of lignin or tannin model compounds using TMDP and pyridine/CDCl3 as the
469phosphitylating reagent and solvent, respectively. A completely new solvent system and 31P reagent
470may necessitate extensive verification of chemical shift integration ranges, as those originally
471proposed might not be valid in the new solvent system. 472

473Calculation of the amount of different hydroxyl groups ● Timing ~30 min
47419 Calculate the mole quantity of IS (NHND, with a purity of 97%) in IS solution:

NHND in IS solution ðmmolÞ ¼ Mass of NHND ðgÞ
179:17 ðg=molÞ ´ 97% ´ 1; 000

Table 1 | Typical integration regions for lignins in a 31P NMR
spectrum134

Lignin functional group Chemical shift (p.p.m.)

Aliphatic OH ~145.4–150.0

Phenolic OH ~137.6–144.0

C5 substituted ~140.0–144.5

5-5 ~141.2

4-O-5 ~142.3

Syringyl ~142.7

β-5 ~143.5

Guaiacyl ~139.0–140.2

p-Hydroxyphenyl ~137.8

Carboxylic acid OH ~133.6–136.0

Table 2 | Typical integration regions for tannins in a 31P NMR
spectrum22

Tannin functional group Chemical shift (p.p.m.)

Ring A

o-Unsubstituted phenolic OH 137.9–137.4

o-Substituted 138.8–137.9

Ring B

Catechol 140.2–138.8

Pyrogallol 144.0–140.2

Ring C

Aliphatic OH 150.0–145.5
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475476

47720 Calculate the mole quantity of IS (NHND) in the NMR sample:

NHND inNMR sample ðmmolÞ ¼ NHND in IS solution ðmmolÞ
Totalmass of IS solution ðgÞ

´ Mass of 0:1mL of IS solution ðgÞ
478479

48021 Calculate the ratio (R) of the integration of the spectral region of interest (IOH) over the IS region
481(INHND):

R ¼ IOH=INHND ¼ Integration of spectral region of interest
Integration of NHND region

482483

48422 Calculate the amount of different hydroxyl groups in lignin/tannin samples, that is, mmol OH/g
485lignin:

mmol of different types of OHper g of lignin=tannin ¼ Rmmol of NHND inNMR sampleðmmolÞ
Dry weight of lignin=tannin sampleðgÞ

486487

48823 Determine the fine structural details of condensed tannins using the scheme in Box 1. 489

490
Troubleshooting

491Troubleshooting advice can be found in Table 3.

Box 1 | Determining the fine structural details of condensed tannins

1. Amount of proanthocyanidins = 1/2 × catechols.
2. Average phenols in ring B (b) = (B ring OH)/(1/2×catechols).
3. Ring B substitution pattern = (pyrogallol OH)/(1/2×catechols).
4. Average phenols in ring A (a) = (A ring OH)/(1/2×catechols) = (2 ring A = phloroglucinol; 1 ring

A = resorcinol).
5. Average monomeric unit molecular weight (Mw) = C15H12O2 + O (a + b), where a = average phenols on ring

A and b = average phenols on ring B.
6. Sample purity (flavan-3-ol content) (%) = 1/2 × catechols × Mw × 0.1.

Table 3 | Troubleshooting table

Step Problem Possible reason Solution

5 A heterogeneous mixture
is formed

Poor solubility of the substrate in
chloroform and pyridine solvent mixture

Add more solvent. If the substrate is still insoluble,
a small amount of a third solvent such as DMF could be
added to help dissolve the samples. Always keep in mind
that the third solvent introduced into the system needs to
be inert so as not to interfere with the sought functionality
analysis and not significantly affect the chemical
shifts15,20. Stir the solution overnight if necessary with a
magnetic stir bar

7 Precipitates are formed The substrate has too much moisture and/
or the TMDP–solvent mixture has been
contaminated by water

The sample needs to be dried again before being dissolved
in freshly prepared pyridine–chloroform-d and derivatized
by fresh TMDP

There is not enough deuterated chloroform
to dissolve the pyridine-HCl salt

Add an extra amount of solvent A (deuterated chloroform
and pyridine) until the precipitate is no longer visible. The
amount of solvent being added will not affect the ensuing
quantitative analysis

15 The TMDP peak is missing
in the 31P NMR spectra

There is not enough TMDP in the NMR
sample solution, and thus the
phosphitylation reaction is incomplete

If the TMDP peak is missing, repeat Step 14 by adding
extra TMDP and perform the NMR experiment again until
a sharp TMDP peak shows up
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492
Timing

493Steps 1 and 2, sample Q13setup: ~24 h
494Steps 3–7, NMR solution setup: ~30 min–12 h
495Steps 8–13, NMR measurement: ~30 min–2 h
496Steps 14–18, data processing: ~20 min
497Steps 19–23, calculation of the amount of different hydroxyl groups: ~30 min

498
Anticipated results

499Figure 5 shows three quantitative 31P NMR spectra of phosphitylated organosolv poplar, pine, and
500switchgrass lignin derivatized with TMDP using NHND as the IS. A cryoprobe-equipped spectro-
501meter was used in this study; room temperature probes are sufficient for the 31P NMR protocol, but
502an increased number of scans (128 or 256) is needed to achieve the equivalent S/N. As shown in
503Fig. 5, the IS used in this study, NHND, has a chemical shift that is well separated from lignin-derived
504components. Different TMDP-derivatized OH groups including aliphatic, syringyl, guaiacyl,
505p-hydroxyphenyl, and carboxylic acid OH have substantially different chemical shifts, which allows
506them to be distinguished and quantified by 31P NMR. It is recommended that the syringyl and other
507types of condensed 5-substituted units (e.g., 5-5 and β-5) be combined into C5 substituted phenolic
508OH because of the signal overlap issue, in order to prevent possible overestimation of the syringyl OH
509and underestimation of condensed units84,107. This normally will not be a problem for softwood
510lignins, as the C5-substituted OH is composed exclusively of condensed guaiacyl units as shown in
511Fig. 5. Taking into account the comments above, we show the calculated contents of five different

155 150 145 140 135

(p.p.m.)

N-hydroxy-5-norbornene-2,3-dicarboximide
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Fig. 5 | Quantitative 31P NMR spectra of organosolv poplar, pine, and switchgrass lignin derivatized with TMDP using NHND as the IS.
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513Fig. 6. Measurements were done in triplicate on distinct samples, and the results show great
514reproducibility, with the coefficient of variation ranging from 1.1% to 9.8%. Quantitative data clearly
515show that softwood lignin and herbaceous lignin were the richest in guaiacyl and p-hydroxyphenyl
516OH groups, respectively, while hardwood lignin had the greatest amount of C5-substituted OH.
517Tricin, a flavonoid metabolite, was also identified in switchgrass lignin.
518The 31P NMR spectrum of proanthocyanidins can be divided into three main regions: 138.1–137.5,
519142.5–137.9, and 146.0–145.0 p.p.m. relative to ring A (o-unsubstituted phenolic OH-groups), ring B
520(catechols/pyrogallols), and ring C (aliphatic OH), respectively. The absorbance area of ring B is
521further divided into two specific regions because of the o-disubstituted phenolics in 3,4,5-trihy-
522droxyphenyl units (142.5–141.8/141.5–141.0 p.p.m.) and the o-monosubstituted hydroxyphenyl
523groups (139.4–137.9 p.p.m.) characteristic of the prorobinetinidin/prodelphinidin and procyanidin/
524profisetinidin subunits, respectively. Integration of the catecholic area allows the quantitative
525determination of the amount of flavan-3-ol units; in fact, each subunit in condensed tannins contains
526two catecholic groups in ring B (Fig. 2). Figure 7 shows Q15representative spectra of commercial samples
527of condensed tannins along with A, B, and C rings in chemical shift regions. When the B ring belongs
528to the procyanidin/profisetinidin family, only signals in the catecholic area are present (Fig. 7a). In the
529case of samples containing prorobinetinidin/prodelphinidin units, an additional signal is present in
530the pyrogallol area (Fig. 7b). The ratio between the pyrogallol and the catechol content gives the ring
531B substitution pattern ratio.
532The specific nature of ring A is determined by the integration of the o-unsubstituted phenolic
533groups (138.1–137.5 p.p.m.). The Q16ratio of the integrals of the regions related to B and A rings provides
534the average amount of phenolic units in the A ring per flavan-3-ol unit, and thus its specific resorcinol
535or phloroglucinol nature (Fig. 2). Technical samples can contain mixtures of different proantho-
536cyanidins. In this case, the ratio of the different A rings’ patterns is easily determined. The 31P NMR
537analysis of tannins also provides a determination of the sample purity. More specifically, it can be
538calculated from the ratio between the amount of flavan-3-ol units as determined by the integration of
539the catechol region (divided by 2, as each flavan-3-ol unit contains two catecholic OH groups) and the
540average Mw of the flavan-3-ol subunits as determined from the substitution patterns of A and B rings
541according to the following equation 22:

Flavan�3�ol content %ð Þ ¼ Flavan�3�ol content=Theoretical flavan�3�ol contentð Þ ´ 100
542543where the flavan-3-ol content is determined by the mmol/g of catechols divided by 2, and the
544theoretical flavan-3-ol content is determined by 1/average flavan-3-olMw. When complex tannins are
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545present where both pyrogallol groups and esterified gallates are present, it is possible to specifically
546integrate the different units owing to the excellent signal resolution, as shown in Fig. 8.
547In conclusion, the quantitative 31P NMR technique presented in this protocol offers a rapid but
548reliable analytical tool for analysis of hydroxyl groups, and we believe it will be continually used to
549explore the functionality of biomass-based green materials in future integrated biorefinery studies and
550plant sciences.

551Reporting Summary
552Further information on research design is available in the Nature Research Reporting Summary
553linked to this article.

554Data availability
555All data generated during this study are included in this published article. The NMR integration data
556are available upon request. The software used for NMR data analysis is freely available (see
557‘Software’).
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