113 research outputs found
Nested sampling for Bayesian model comparison in the context of Salmonella disease dynamics.
Understanding the mechanisms underlying the observed dynamics of complex biological systems requires the statistical assessment and comparison of multiple alternative models. Although this has traditionally been done using maximum likelihood-based methods such as Akaike's Information Criterion (AIC), Bayesian methods have gained in popularity because they provide more informative output in the form of posterior probability distributions. However, comparison between multiple models in a Bayesian framework is made difficult by the computational cost of numerical integration over large parameter spaces. A new, efficient method for the computation of posterior probabilities has recently been proposed and applied to complex problems from the physical sciences. Here we demonstrate how nested sampling can be used for inference and model comparison in biological sciences. We present a reanalysis of data from experimental infection of mice with Salmonella enterica showing the distribution of bacteria in liver cells. In addition to confirming the main finding of the original analysis, which relied on AIC, our approach provides: (a) integration across the parameter space, (b) estimation of the posterior parameter distributions (with visualisations of parameter correlations), and (c) estimation of the posterior predictive distributions for goodness-of-fit assessments of the models. The goodness-of-fit results suggest that alternative mechanistic models and a relaxation of the quasi-stationary assumption should be considered.RD was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) (grant number BB/I002189/1). TJM was funded by the
Biotechnology and Biological Sciences Research Council (BBSRC) (grant number BB/I012192/1). OR was funded by the Royal Society. The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript
An offer you cannot refuse: down-regulation of immunity in response to a pathogen's retaliation threat.
According to the Red Queen hypothesis, hosts and pathogens are engaged in an escalating coevolutionary arms race between resistance and virulence. However, the vast majority of symbionts colonize their hosts' mucosal compartments without triggering any immune response, resulting in durable commensal associations. Here, I propose a simple extension of previous mathematical models for antagonistic coevolution in which the host can mount a delayed immune response; in response, the symbiont can change its virulence following this activation. Even though the levels of virulence in both phases are assumed to be genetically determined, this simple form of plasticity can select for commensal associations. In particular, coevolution can result in hosts that do not activate their immune response, thus preventing phenotypically plastic pathogens from switching to a higher virulence level. I argue that, from the host's point of view, this state is analogous to the mafia behaviour previously described in avian brood parasites. More importantly, this study provides a new hypothesis for the maintenance of a commensal relationship through antagonistic coevolution
Characteristics and Risk Perceptions of Ghanaians Potentially Exposed to Bat-Borne Zoonoses through Bushmeat.
Emerging zoonotic pathogens from wildlife pose increasing public health threats globally. Bats, in particular, host an array of zoonotic pathogens, yet there is little research on how bats and humans interact, how people perceive bats and their accompanying disease risk, or who is most at risk. Eidolon helvum, the largest and most abundant African fruit bat species, is widely hunted and eaten in Ghana and also carries potentially zoonotic pathogens. This combination raises concerns, as hunting and butchering bushmeat are common sources of zoonotic transmission. Through a combination of interviews with 577 Ghanaians across southern Ghana, we identified the characteristics of people involved in the bat-bushmeat trade and we explored their perceptions of risk. Bat hunting, selling and consumption are widely distributed across regional and ethnic lines, with hotspots in certain localities, while butchering is predominantly done by women and active hunters. Interviewees held little belief of disease risk from bats, saw no ecological value in fruit bats and associated the consumption of bats with specific tribes. These data can be used to inform disease and conservation management plans, drawing on social contexts and ensuring that local voices are heard within the larger global effort to study and mitigate outbreaks.This is the final version. It was first published by Springer in EcoHealth at http://link.springer.com/article/10.1007%2Fs10393-014-0977-0
Challenges in modelling the dynamics of infectious diseases at the wildlife–human interface
The Covid-19 pandemic is of zoonotic origin, and many other emerging infections of humans have their origin in an animal host population. We review the challenges involved in modelling the dynamics of wildlife–human interfaces governing infectious disease emergence and spread. We argue that we need a better understanding of the dynamic nature of such interfaces, the underpinning diversity of pathogens and host–pathogen association networks, and the scales and frequencies at which environmental conditions enable spillover and host shifting from animals to humans to occur. The major drivers of the emergence of zoonoses are anthropogenic, including the global change in climate and land use. These, and other ecological processes pose challenges that must be overcome to counterbalance pandemic risk. The development of more detailed and nuanced models will provide better tools for analysing and understanding infectious disease emergence and spread
Recommended from our members
Within-host spatiotemporal dynamics of systemic Salmonella infection during and after antimicrobial treatment
We determined the interactions between efficacy of antibiotic treatment, pathogen growth rates and between-organ spread during systemic infections.
We infected mice with isogenic molecularly tagged subpopulations of either a fast-growing WT or a slow-growing strain. We monitored viable bacterial numbers and fluctuations in the proportions of each bacterial subpopulation in spleen, liver, blood and mesenteric lymph nodes (MLNs) before, during and after the cessation of treatment with ampicillin and ciprofloxacin.
Both antimicrobials induced a reduction in viable bacterial numbers in the spleen, liver and blood. This reduction was biphasic in infections with fast-growing bacteria, with a rapid initial reduction followed by a phase of lower effect. Conversely, a slow and gradual reduction of the bacterial load was seen in infections with the slow-growing strain, indicating a positive correlation between bacterial net growth rates and the efficacy of ampicillin and ciprofloxacin. The viable numbers of either bacterial strain remained constant in MLNs throughout the treatment with a relapse of the infection with WT bacteria occurring after cessation of the treatment. The frequency of each tagged bacterial subpopulation was similar in the spleen and liver, but different from that of the MLNs before, during and after treatment.
In infections, bacterial growth rates correlate with treatment efficacy. MLNs are a site with a bacterial population structure different to those of the spleen and liver and where the total viable bacterial load remains largely unaffected by antimicrobials, but can resume growth after cessation of treatment.This work was supported by the Biotechnology and Biological Sciences Research Council (BBSRC) grant number BB/M000982/1 (http://www.bbsrc.ac.uk/research/grants/grants/AwardDetails.aspx?FundingReference=BB/M000982/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Inferring within-host bottleneck size: A Bayesian approach.
Recent technical developments in microbiology have led to new discoveries on the within-host dynamics of bacterial infections in laboratory animals. In particular, they have highlighted the importance of stochastic bottlenecks at the onset of invasive disease. A number of approaches exist for bottleneck-size estimation with respect to within-host bacterial infections; however, some are more appropriate than others under certain circumstances. A Bayesian comparison of several approaches is made in terms of the availability of isogenic multitype bacteria (e.g., WITS), knowledge of post-bottleneck dynamics, and the suitability of dilution with monotype bacteria. A sampling approach to bottleneck-size estimation is also introduced. The results are summarised by a guiding flowchart, which we hope will promote the use of quantitative models in microbiology to refine the analysis of animal experiment data
The effects of vaccination and immunity on bacterial infection dynamics in vivo.
Salmonella enterica infections are a significant global health issue, and development of vaccines against these bacteria requires an improved understanding of how vaccination affects the growth and spread of the bacteria within the host. We have combined in vivo tracking of molecularly tagged bacterial subpopulations with mathematical modelling to gain a novel insight into how different classes of vaccines and branches of the immune response protect against secondary Salmonella enterica infections of the mouse. We have found that a live Salmonella vaccine significantly reduced bacteraemia during a secondary challenge and restrained inter-organ spread of the bacteria in the systemic organs. Further, fitting mechanistic models to the data indicated that live vaccine immunisation enhanced both the bacterial killing in the very early stages of the infection and bacteriostatic control over the first day post-challenge. T-cell immunity induced by this vaccine is not necessary for the enhanced bacteriostasis but is required for subsequent bactericidal clearance of Salmonella in the blood and tissues. Conversely, a non-living vaccine while able to enhance initial blood clearance and killing of virulent secondary challenge bacteria, was unable to alter the subsequent bacterial growth rate in the systemic organs, did not prevent the resurgence of extensive bacteraemia and failed to control the spread of the bacteria in the body.This work was supported by the Biotechnology and Biological Sciences Research Council [grant number BB/I002189/1].This is the published manuscript. It was originally published by PLOS One here: http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1004359
How Hepatitis D Virus Can Hinder the Control of Hepatitis B Virus
BACKGROUND: Hepatitis D (or hepatitis delta) virus is a defective virus that relies on hepatitis B virus (HBV) for transmission; infection with hepatitis D can occur only as coinfection with HBV or superinfection of an existing HBV infection. Because of the bond between the two viruses, control measures for HBV may have also affected the spread of hepatitis D, as evidenced by the decline of hepatitis D in recent years. Since the presence of hepatitis D is associated with suppressed HBV replication and possibly infectivity, it is reasonable to speculate that hepatitis D may facilitate the control of HBV. METHODOLOGY AND PRINCIPAL FINDINGS: We introduced a mathematical model for the transmission of HBV and hepatitis D, where individuals with dual HBV and hepatitis D infection transmit both viruses. We calculated the reproduction numbers of single HBV infections and dual HBV and hepatitis D infections and examined the endemic prevalences of the two viruses. The results show that hepatitis D virus modulates not only the severity of the HBV epidemic, but also the impact of interventions for HBV. Surprisingly we find that the presence of hepatitis D virus may hamper the eradication of HBV. Interventions that aim to reduce the basic reproduction number of HBV below one may not be sufficient to eradicate the virus, as control of HBV depends also on the reproduction numbers of dual infections. CONCLUSIONS AND SIGNIFICANCE: For populations where hepatitis D is endemic, plans for control programs ignoring the presence of hepatitis D may underestimate the HBV epidemic and produce overoptimistic results. The current HBV surveillance should be augmented with monitoring of hepatitis D, in order to improve accuracy of the monitoring and the efficacy of control measures
What is stirring in the reservoir? Modelling mechanisms of henipavirus circulation in fruit bat hosts
Pathogen circulation among reservoir hosts is a precondition for zoonotic spillover. Unlike the acute, high morbidity infections typical in spillover hosts, infected reservoir hosts often exhibit low morbidity and mortality. Although it has been proposed that reservoir host infections may be persistent with recurrent episodes of shedding, direct evidence is often lacking. We construct a generalized SEIR (susceptible, exposed, infectious, recovered) framework encompassing 46 sub-models representing the full range of possible transitions among those four states of infection and immunity. We then use likelihood-based methods to fit these models to nine years of longitudinal data on henipavirus serology from a captive colony of Eidolon helvum bats in Ghana. We find that reinfection is necessary to explain observed dynamics; that acute infectious periods may be very short (hours to days); that immunity, if present, lasts about 1–2 years; and that recurring latent infection is likely. Although quantitative inference is sensitive to assumptions about serology, qualitative predictions are robust. Our novel approach helps clarify mechanisms of viral persistence and circulation in wild bats, including estimated ranges for key parameters such as the basic reproduction number and the duration of the infectious period. Our results inform how future field-based and experimental work could differentiate the processes of viral recurrence and reinfection in reservoir hosts.
This article is part of the theme issue ‘Dynamic and integrative approaches to understanding pathogen spillover’
Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms
Sex differences in life history, physiology, and behavior are nearly ubiquitous across taxa, owing to sex-specific selection that arises from different reproductive strategies of the sexes. The pace-of-life syndrome (POLS) hypothesis predicts that most variation in such traits among individuals, populations, and species falls along a slow-fast pace-of-life continuum. As a result of their different reproductive roles and environment, the sexes also commonly differ in pace-of-life, with important consequences for the evolution of POLS. Here, we outline mechanisms for how males and females can evolve differences in POLS traits and in how such traits can covary differently despite constraints resulting from a shared genome. We review the current knowledge of the genetic basis of POLS traits and suggest candidate genes and pathways for future studies. Pleiotropic effects may govern many of the genetic correlations, but little is still known about the mechanisms involved in trade-offs between current and future reproduction and their integration with behavioral variation. We highlight the importance of metabolic and hormonal pathways in mediating sex differences in POLS traits; however, there is still a shortage of studies that test for sex specificity in molecular effects and their evolutionary causes. Considering whether and how sexual dimorphism evolves in POLS traits provides a more holistic framework to understand how behavioral variation is integrated with life histories and physiology, and we call for studies that focus on examining the sex-specific genetic architecture of this integration
- …
